Loading…
An Inertial method for solutions of split equality inclusion problems
The main objective of this Thesis is to introduce and study the Split Equality Inclusion Problem in the framework of real Hilbert spaces. In order to solve this problem, we propose an inertial method for approximating a solution of the problem. Using the method, we prove a strong convergence theorem...
Saved in:
Published in: | Rendiconti del Circolo matematico di Palermo 2023-11, Vol.72 (7), p.3709-3731 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-7aa83a4b28b024f3eecd6112bf150832bcb911258f21c94dbdd4fea919a3235a3 |
container_end_page | 3731 |
container_issue | 7 |
container_start_page | 3709 |
container_title | Rendiconti del Circolo matematico di Palermo |
container_volume | 72 |
creator | Thobogang, Omponye T. Zegeye, Habtu Boikanyo, Oganeditse A. |
description | The main objective of this Thesis is to introduce and study the
Split Equality Inclusion Problem
in the framework of real Hilbert spaces. In order to solve this problem, we propose an inertial method for approximating a solution of the problem. Using the method, we prove a strong convergence theorem to a solution of the problem. In addition, we provide some applications of our method and present numerical results to demonstrate the applicability and efficiency of the proposed method. The result obtained in this paper generalizes and improves several results in the Literature in this direction. |
doi_str_mv | 10.1007/s12215-022-00853-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2867583616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2867583616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-7aa83a4b28b024f3eecd6112bf150832bcb911258f21c94dbdd4fea919a3235a3</originalsourceid><addsrcrecordid>eNp9kE9LwzAYxoMoOKdfwFPAc_RN0rTJcYypg4EXBW8haRPtaJstaQ_79kYrePP08PI-f-CH0C2FewpQPSTKGBUEGCMAUnAiztCCqoqTogB1jhYAoEjFxPslukppD1BSkGqBNqsBbwcXx9Z0uHfjZ2iwDxGn0E1jG4aEg8fp0LUjdsfJZD3hdqi7KeUnPsRgO9ena3ThTZfcza8u0dvj5nX9THYvT9v1akdqVsFIKmMkN4Vl0gIrPHeubkpKmfVUgOTM1lblU0jPaK2KxjZN4Z1RVBnOuDB8ie7m3jx8nFwa9T5McciTmsmyEpKXtMwuNrvqGFKKzutDbHsTT5qC_salZ1w649I_uLTIIT6HUjYPHy7-Vf-T-gIcSm2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2867583616</pqid></control><display><type>article</type><title>An Inertial method for solutions of split equality inclusion problems</title><source>Springer Nature</source><creator>Thobogang, Omponye T. ; Zegeye, Habtu ; Boikanyo, Oganeditse A.</creator><creatorcontrib>Thobogang, Omponye T. ; Zegeye, Habtu ; Boikanyo, Oganeditse A.</creatorcontrib><description>The main objective of this Thesis is to introduce and study the
Split Equality Inclusion Problem
in the framework of real Hilbert spaces. In order to solve this problem, we propose an inertial method for approximating a solution of the problem. Using the method, we prove a strong convergence theorem to a solution of the problem. In addition, we provide some applications of our method and present numerical results to demonstrate the applicability and efficiency of the proposed method. The result obtained in this paper generalizes and improves several results in the Literature in this direction.</description><identifier>ISSN: 0009-725X</identifier><identifier>EISSN: 1973-4409</identifier><identifier>DOI: 10.1007/s12215-022-00853-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Geometry ; Hilbert space ; Mathematics ; Mathematics and Statistics</subject><ispartof>Rendiconti del Circolo matematico di Palermo, 2023-11, Vol.72 (7), p.3709-3731</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-7aa83a4b28b024f3eecd6112bf150832bcb911258f21c94dbdd4fea919a3235a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Thobogang, Omponye T.</creatorcontrib><creatorcontrib>Zegeye, Habtu</creatorcontrib><creatorcontrib>Boikanyo, Oganeditse A.</creatorcontrib><title>An Inertial method for solutions of split equality inclusion problems</title><title>Rendiconti del Circolo matematico di Palermo</title><addtitle>Rend. Circ. Mat. Palermo, II. Ser</addtitle><description>The main objective of this Thesis is to introduce and study the
Split Equality Inclusion Problem
in the framework of real Hilbert spaces. In order to solve this problem, we propose an inertial method for approximating a solution of the problem. Using the method, we prove a strong convergence theorem to a solution of the problem. In addition, we provide some applications of our method and present numerical results to demonstrate the applicability and efficiency of the proposed method. The result obtained in this paper generalizes and improves several results in the Literature in this direction.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Geometry</subject><subject>Hilbert space</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0009-725X</issn><issn>1973-4409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LwzAYxoMoOKdfwFPAc_RN0rTJcYypg4EXBW8haRPtaJstaQ_79kYrePP08PI-f-CH0C2FewpQPSTKGBUEGCMAUnAiztCCqoqTogB1jhYAoEjFxPslukppD1BSkGqBNqsBbwcXx9Z0uHfjZ2iwDxGn0E1jG4aEg8fp0LUjdsfJZD3hdqi7KeUnPsRgO9ena3ThTZfcza8u0dvj5nX9THYvT9v1akdqVsFIKmMkN4Vl0gIrPHeubkpKmfVUgOTM1lblU0jPaK2KxjZN4Z1RVBnOuDB8ie7m3jx8nFwa9T5McciTmsmyEpKXtMwuNrvqGFKKzutDbHsTT5qC_salZ1w649I_uLTIIT6HUjYPHy7-Vf-T-gIcSm2g</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Thobogang, Omponye T.</creator><creator>Zegeye, Habtu</creator><creator>Boikanyo, Oganeditse A.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231101</creationdate><title>An Inertial method for solutions of split equality inclusion problems</title><author>Thobogang, Omponye T. ; Zegeye, Habtu ; Boikanyo, Oganeditse A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-7aa83a4b28b024f3eecd6112bf150832bcb911258f21c94dbdd4fea919a3235a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Geometry</topic><topic>Hilbert space</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thobogang, Omponye T.</creatorcontrib><creatorcontrib>Zegeye, Habtu</creatorcontrib><creatorcontrib>Boikanyo, Oganeditse A.</creatorcontrib><collection>CrossRef</collection><jtitle>Rendiconti del Circolo matematico di Palermo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thobogang, Omponye T.</au><au>Zegeye, Habtu</au><au>Boikanyo, Oganeditse A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Inertial method for solutions of split equality inclusion problems</atitle><jtitle>Rendiconti del Circolo matematico di Palermo</jtitle><stitle>Rend. Circ. Mat. Palermo, II. Ser</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>72</volume><issue>7</issue><spage>3709</spage><epage>3731</epage><pages>3709-3731</pages><issn>0009-725X</issn><eissn>1973-4409</eissn><abstract>The main objective of this Thesis is to introduce and study the
Split Equality Inclusion Problem
in the framework of real Hilbert spaces. In order to solve this problem, we propose an inertial method for approximating a solution of the problem. Using the method, we prove a strong convergence theorem to a solution of the problem. In addition, we provide some applications of our method and present numerical results to demonstrate the applicability and efficiency of the proposed method. The result obtained in this paper generalizes and improves several results in the Literature in this direction.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s12215-022-00853-5</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-725X |
ispartof | Rendiconti del Circolo matematico di Palermo, 2023-11, Vol.72 (7), p.3709-3731 |
issn | 0009-725X 1973-4409 |
language | eng |
recordid | cdi_proquest_journals_2867583616 |
source | Springer Nature |
subjects | Algebra Analysis Applications of Mathematics Geometry Hilbert space Mathematics Mathematics and Statistics |
title | An Inertial method for solutions of split equality inclusion problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Inertial%20method%20for%20solutions%20of%20split%20equality%20inclusion%20problems&rft.jtitle=Rendiconti%20del%20Circolo%20matematico%20di%20Palermo&rft.au=Thobogang,%20Omponye%20T.&rft.date=2023-11-01&rft.volume=72&rft.issue=7&rft.spage=3709&rft.epage=3731&rft.pages=3709-3731&rft.issn=0009-725X&rft.eissn=1973-4409&rft_id=info:doi/10.1007/s12215-022-00853-5&rft_dat=%3Cproquest_cross%3E2867583616%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-7aa83a4b28b024f3eecd6112bf150832bcb911258f21c94dbdd4fea919a3235a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2867583616&rft_id=info:pmid/&rfr_iscdi=true |