Loading…

An Inertial method for solutions of split equality inclusion problems

The main objective of this Thesis is to introduce and study the Split Equality Inclusion Problem in the framework of real Hilbert spaces. In order to solve this problem, we propose an inertial method for approximating a solution of the problem. Using the method, we prove a strong convergence theorem...

Full description

Saved in:
Bibliographic Details
Published in:Rendiconti del Circolo matematico di Palermo 2023-11, Vol.72 (7), p.3709-3731
Main Authors: Thobogang, Omponye T., Zegeye, Habtu, Boikanyo, Oganeditse A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-7aa83a4b28b024f3eecd6112bf150832bcb911258f21c94dbdd4fea919a3235a3
container_end_page 3731
container_issue 7
container_start_page 3709
container_title Rendiconti del Circolo matematico di Palermo
container_volume 72
creator Thobogang, Omponye T.
Zegeye, Habtu
Boikanyo, Oganeditse A.
description The main objective of this Thesis is to introduce and study the Split Equality Inclusion Problem in the framework of real Hilbert spaces. In order to solve this problem, we propose an inertial method for approximating a solution of the problem. Using the method, we prove a strong convergence theorem to a solution of the problem. In addition, we provide some applications of our method and present numerical results to demonstrate the applicability and efficiency of the proposed method. The result obtained in this paper generalizes and improves several results in the Literature in this direction.
doi_str_mv 10.1007/s12215-022-00853-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2867583616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2867583616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-7aa83a4b28b024f3eecd6112bf150832bcb911258f21c94dbdd4fea919a3235a3</originalsourceid><addsrcrecordid>eNp9kE9LwzAYxoMoOKdfwFPAc_RN0rTJcYypg4EXBW8haRPtaJstaQ_79kYrePP08PI-f-CH0C2FewpQPSTKGBUEGCMAUnAiztCCqoqTogB1jhYAoEjFxPslukppD1BSkGqBNqsBbwcXx9Z0uHfjZ2iwDxGn0E1jG4aEg8fp0LUjdsfJZD3hdqi7KeUnPsRgO9ena3ThTZfcza8u0dvj5nX9THYvT9v1akdqVsFIKmMkN4Vl0gIrPHeubkpKmfVUgOTM1lblU0jPaK2KxjZN4Z1RVBnOuDB8ie7m3jx8nFwa9T5McciTmsmyEpKXtMwuNrvqGFKKzutDbHsTT5qC_salZ1w649I_uLTIIT6HUjYPHy7-Vf-T-gIcSm2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2867583616</pqid></control><display><type>article</type><title>An Inertial method for solutions of split equality inclusion problems</title><source>Springer Nature</source><creator>Thobogang, Omponye T. ; Zegeye, Habtu ; Boikanyo, Oganeditse A.</creator><creatorcontrib>Thobogang, Omponye T. ; Zegeye, Habtu ; Boikanyo, Oganeditse A.</creatorcontrib><description>The main objective of this Thesis is to introduce and study the Split Equality Inclusion Problem in the framework of real Hilbert spaces. In order to solve this problem, we propose an inertial method for approximating a solution of the problem. Using the method, we prove a strong convergence theorem to a solution of the problem. In addition, we provide some applications of our method and present numerical results to demonstrate the applicability and efficiency of the proposed method. The result obtained in this paper generalizes and improves several results in the Literature in this direction.</description><identifier>ISSN: 0009-725X</identifier><identifier>EISSN: 1973-4409</identifier><identifier>DOI: 10.1007/s12215-022-00853-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Geometry ; Hilbert space ; Mathematics ; Mathematics and Statistics</subject><ispartof>Rendiconti del Circolo matematico di Palermo, 2023-11, Vol.72 (7), p.3709-3731</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-7aa83a4b28b024f3eecd6112bf150832bcb911258f21c94dbdd4fea919a3235a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Thobogang, Omponye T.</creatorcontrib><creatorcontrib>Zegeye, Habtu</creatorcontrib><creatorcontrib>Boikanyo, Oganeditse A.</creatorcontrib><title>An Inertial method for solutions of split equality inclusion problems</title><title>Rendiconti del Circolo matematico di Palermo</title><addtitle>Rend. Circ. Mat. Palermo, II. Ser</addtitle><description>The main objective of this Thesis is to introduce and study the Split Equality Inclusion Problem in the framework of real Hilbert spaces. In order to solve this problem, we propose an inertial method for approximating a solution of the problem. Using the method, we prove a strong convergence theorem to a solution of the problem. In addition, we provide some applications of our method and present numerical results to demonstrate the applicability and efficiency of the proposed method. The result obtained in this paper generalizes and improves several results in the Literature in this direction.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Geometry</subject><subject>Hilbert space</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0009-725X</issn><issn>1973-4409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LwzAYxoMoOKdfwFPAc_RN0rTJcYypg4EXBW8haRPtaJstaQ_79kYrePP08PI-f-CH0C2FewpQPSTKGBUEGCMAUnAiztCCqoqTogB1jhYAoEjFxPslukppD1BSkGqBNqsBbwcXx9Z0uHfjZ2iwDxGn0E1jG4aEg8fp0LUjdsfJZD3hdqi7KeUnPsRgO9ena3ThTZfcza8u0dvj5nX9THYvT9v1akdqVsFIKmMkN4Vl0gIrPHeubkpKmfVUgOTM1lblU0jPaK2KxjZN4Z1RVBnOuDB8ie7m3jx8nFwa9T5McciTmsmyEpKXtMwuNrvqGFKKzutDbHsTT5qC_salZ1w649I_uLTIIT6HUjYPHy7-Vf-T-gIcSm2g</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Thobogang, Omponye T.</creator><creator>Zegeye, Habtu</creator><creator>Boikanyo, Oganeditse A.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231101</creationdate><title>An Inertial method for solutions of split equality inclusion problems</title><author>Thobogang, Omponye T. ; Zegeye, Habtu ; Boikanyo, Oganeditse A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-7aa83a4b28b024f3eecd6112bf150832bcb911258f21c94dbdd4fea919a3235a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Geometry</topic><topic>Hilbert space</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thobogang, Omponye T.</creatorcontrib><creatorcontrib>Zegeye, Habtu</creatorcontrib><creatorcontrib>Boikanyo, Oganeditse A.</creatorcontrib><collection>CrossRef</collection><jtitle>Rendiconti del Circolo matematico di Palermo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thobogang, Omponye T.</au><au>Zegeye, Habtu</au><au>Boikanyo, Oganeditse A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Inertial method for solutions of split equality inclusion problems</atitle><jtitle>Rendiconti del Circolo matematico di Palermo</jtitle><stitle>Rend. Circ. Mat. Palermo, II. Ser</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>72</volume><issue>7</issue><spage>3709</spage><epage>3731</epage><pages>3709-3731</pages><issn>0009-725X</issn><eissn>1973-4409</eissn><abstract>The main objective of this Thesis is to introduce and study the Split Equality Inclusion Problem in the framework of real Hilbert spaces. In order to solve this problem, we propose an inertial method for approximating a solution of the problem. Using the method, we prove a strong convergence theorem to a solution of the problem. In addition, we provide some applications of our method and present numerical results to demonstrate the applicability and efficiency of the proposed method. The result obtained in this paper generalizes and improves several results in the Literature in this direction.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s12215-022-00853-5</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-725X
ispartof Rendiconti del Circolo matematico di Palermo, 2023-11, Vol.72 (7), p.3709-3731
issn 0009-725X
1973-4409
language eng
recordid cdi_proquest_journals_2867583616
source Springer Nature
subjects Algebra
Analysis
Applications of Mathematics
Geometry
Hilbert space
Mathematics
Mathematics and Statistics
title An Inertial method for solutions of split equality inclusion problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Inertial%20method%20for%20solutions%20of%20split%20equality%20inclusion%20problems&rft.jtitle=Rendiconti%20del%20Circolo%20matematico%20di%20Palermo&rft.au=Thobogang,%20Omponye%20T.&rft.date=2023-11-01&rft.volume=72&rft.issue=7&rft.spage=3709&rft.epage=3731&rft.pages=3709-3731&rft.issn=0009-725X&rft.eissn=1973-4409&rft_id=info:doi/10.1007/s12215-022-00853-5&rft_dat=%3Cproquest_cross%3E2867583616%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-7aa83a4b28b024f3eecd6112bf150832bcb911258f21c94dbdd4fea919a3235a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2867583616&rft_id=info:pmid/&rfr_iscdi=true