Loading…

Surjectivity of linear operators and semialgebraic global diffeomorphisms

We prove that a C ∞ semialgebraic local diffeomorphism of ℝ n with non-properness set having codimension greater than or equal to 2 is a global diffeomorphism if n − 1 suitable linear partial differential operators are surjective. Then we state a new analytic conjecture for a polynomial local diffeo...

Full description

Saved in:
Bibliographic Details
Published in:Journal d'analyse mathématique (Jerusalem) 2023-09, Vol.150 (2), p.789-802
Main Authors: Braun, Francisco, Dias, Luis Renato Goncalves, Venato-Santos, Jean
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-c2e7d7578c98a967be3c7281e58a7dacef082bdf6e47e9c80dd49144cc72150e3
container_end_page 802
container_issue 2
container_start_page 789
container_title Journal d'analyse mathématique (Jerusalem)
container_volume 150
creator Braun, Francisco
Dias, Luis Renato Goncalves
Venato-Santos, Jean
description We prove that a C ∞ semialgebraic local diffeomorphism of ℝ n with non-properness set having codimension greater than or equal to 2 is a global diffeomorphism if n − 1 suitable linear partial differential operators are surjective. Then we state a new analytic conjecture for a polynomial local diffeomorphism of ℝ n . Our conjecture implies a very known conjecture of Z . Jelonek. We further relate the surjectivity of these operators with the fibration concept and state a general global injectivity theorem for semialgebraic mappings which turns out to unify and generalize previous results of the literature.
doi_str_mv 10.1007/s11854-023-0286-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2867583686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2867583686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-c2e7d7578c98a967be3c7281e58a7dacef082bdf6e47e9c80dd49144cc72150e3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9UkbT56lMWPBcGDeg5pOlmztE1NusLurzdLBU8eZubyvDPMg9A1JbeUEHmXKFW8KggrcylRHE7QgnLBC8VLdYoWhDBaSCHJObpIaUsI53XJFmj9totbsJP_9tMeB4c7P4CJOIwQzRRiwmZocYLem24DTTTe4k0XGtPh1jsHoQ9x_PSpT5fozJkuwdXvXKKPx4f31XPx8vq0Xt2_FJYJNeUOspVcKlsrUwvZQGklUxS4MrI1FhxRrGmdgEpCbRVp26qmVWUzRTmBcolu5r1jDF87SJPehl0c8kmdH5dclUKJTNGZsjGkFMHpMfrexL2mRB-N6dmYzsb00Zg-5AybMymzwwbi3-b_Qz8x43Ac</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2867583686</pqid></control><display><type>article</type><title>Surjectivity of linear operators and semialgebraic global diffeomorphisms</title><source>Springer Nature</source><creator>Braun, Francisco ; Dias, Luis Renato Goncalves ; Venato-Santos, Jean</creator><creatorcontrib>Braun, Francisco ; Dias, Luis Renato Goncalves ; Venato-Santos, Jean</creatorcontrib><description>We prove that a C ∞ semialgebraic local diffeomorphism of ℝ n with non-properness set having codimension greater than or equal to 2 is a global diffeomorphism if n − 1 suitable linear partial differential operators are surjective. Then we state a new analytic conjecture for a polynomial local diffeomorphism of ℝ n . Our conjecture implies a very known conjecture of Z . Jelonek. We further relate the surjectivity of these operators with the fibration concept and state a general global injectivity theorem for semialgebraic mappings which turns out to unify and generalize previous results of the literature.</description><identifier>ISSN: 0021-7670</identifier><identifier>EISSN: 1565-8538</identifier><identifier>DOI: 10.1007/s11854-023-0286-z</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Abstract Harmonic Analysis ; Analysis ; Differential equations ; Dynamical Systems and Ergodic Theory ; Functional Analysis ; Isomorphism ; Linear operators ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Partial Differential Equations ; Polynomials</subject><ispartof>Journal d'analyse mathématique (Jerusalem), 2023-09, Vol.150 (2), p.789-802</ispartof><rights>The Hebrew University of Jerusalem 2023</rights><rights>The Hebrew University of Jerusalem 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-c2e7d7578c98a967be3c7281e58a7dacef082bdf6e47e9c80dd49144cc72150e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Braun, Francisco</creatorcontrib><creatorcontrib>Dias, Luis Renato Goncalves</creatorcontrib><creatorcontrib>Venato-Santos, Jean</creatorcontrib><title>Surjectivity of linear operators and semialgebraic global diffeomorphisms</title><title>Journal d'analyse mathématique (Jerusalem)</title><addtitle>JAMA</addtitle><description>We prove that a C ∞ semialgebraic local diffeomorphism of ℝ n with non-properness set having codimension greater than or equal to 2 is a global diffeomorphism if n − 1 suitable linear partial differential operators are surjective. Then we state a new analytic conjecture for a polynomial local diffeomorphism of ℝ n . Our conjecture implies a very known conjecture of Z . Jelonek. We further relate the surjectivity of these operators with the fibration concept and state a general global injectivity theorem for semialgebraic mappings which turns out to unify and generalize previous results of the literature.</description><subject>Abstract Harmonic Analysis</subject><subject>Analysis</subject><subject>Differential equations</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Functional Analysis</subject><subject>Isomorphism</subject><subject>Linear operators</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Partial Differential Equations</subject><subject>Polynomials</subject><issn>0021-7670</issn><issn>1565-8538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9UkbT56lMWPBcGDeg5pOlmztE1NusLurzdLBU8eZubyvDPMg9A1JbeUEHmXKFW8KggrcylRHE7QgnLBC8VLdYoWhDBaSCHJObpIaUsI53XJFmj9totbsJP_9tMeB4c7P4CJOIwQzRRiwmZocYLem24DTTTe4k0XGtPh1jsHoQ9x_PSpT5fozJkuwdXvXKKPx4f31XPx8vq0Xt2_FJYJNeUOspVcKlsrUwvZQGklUxS4MrI1FhxRrGmdgEpCbRVp26qmVWUzRTmBcolu5r1jDF87SJPehl0c8kmdH5dclUKJTNGZsjGkFMHpMfrexL2mRB-N6dmYzsb00Zg-5AybMymzwwbi3-b_Qz8x43Ac</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Braun, Francisco</creator><creator>Dias, Luis Renato Goncalves</creator><creator>Venato-Santos, Jean</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230901</creationdate><title>Surjectivity of linear operators and semialgebraic global diffeomorphisms</title><author>Braun, Francisco ; Dias, Luis Renato Goncalves ; Venato-Santos, Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-c2e7d7578c98a967be3c7281e58a7dacef082bdf6e47e9c80dd49144cc72150e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Analysis</topic><topic>Differential equations</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Functional Analysis</topic><topic>Isomorphism</topic><topic>Linear operators</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Partial Differential Equations</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braun, Francisco</creatorcontrib><creatorcontrib>Dias, Luis Renato Goncalves</creatorcontrib><creatorcontrib>Venato-Santos, Jean</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braun, Francisco</au><au>Dias, Luis Renato Goncalves</au><au>Venato-Santos, Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surjectivity of linear operators and semialgebraic global diffeomorphisms</atitle><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle><stitle>JAMA</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>150</volume><issue>2</issue><spage>789</spage><epage>802</epage><pages>789-802</pages><issn>0021-7670</issn><eissn>1565-8538</eissn><abstract>We prove that a C ∞ semialgebraic local diffeomorphism of ℝ n with non-properness set having codimension greater than or equal to 2 is a global diffeomorphism if n − 1 suitable linear partial differential operators are surjective. Then we state a new analytic conjecture for a polynomial local diffeomorphism of ℝ n . Our conjecture implies a very known conjecture of Z . Jelonek. We further relate the surjectivity of these operators with the fibration concept and state a general global injectivity theorem for semialgebraic mappings which turns out to unify and generalize previous results of the literature.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11854-023-0286-z</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-7670
ispartof Journal d'analyse mathématique (Jerusalem), 2023-09, Vol.150 (2), p.789-802
issn 0021-7670
1565-8538
language eng
recordid cdi_proquest_journals_2867583686
source Springer Nature
subjects Abstract Harmonic Analysis
Analysis
Differential equations
Dynamical Systems and Ergodic Theory
Functional Analysis
Isomorphism
Linear operators
Mathematics
Mathematics and Statistics
Operators (mathematics)
Partial Differential Equations
Polynomials
title Surjectivity of linear operators and semialgebraic global diffeomorphisms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A02%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surjectivity%20of%20linear%20operators%20and%20semialgebraic%20global%20diffeomorphisms&rft.jtitle=Journal%20d'analyse%20math%C3%A9matique%20(Jerusalem)&rft.au=Braun,%20Francisco&rft.date=2023-09-01&rft.volume=150&rft.issue=2&rft.spage=789&rft.epage=802&rft.pages=789-802&rft.issn=0021-7670&rft.eissn=1565-8538&rft_id=info:doi/10.1007/s11854-023-0286-z&rft_dat=%3Cproquest_cross%3E2867583686%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-c2e7d7578c98a967be3c7281e58a7dacef082bdf6e47e9c80dd49144cc72150e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2867583686&rft_id=info:pmid/&rfr_iscdi=true