Loading…
Estimating Elliptic Billiard Invariants with Spatial Integrals
We give closed-form expressions for recently discovered invariants of Poncelet N-periodic trajectories in the elliptic billiard with spatial integrals evaluated over the boundary of the elliptic billiard. The integrand is weighed by a measure equal to the density of rays hitting a given boundary poi...
Saved in:
Published in: | Journal of dynamical and control systems 2023-09, Vol.29 (3), p.757-767 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-acc253ec37a408c17f258ddf1f3f911cf0dd0c5bce8c487b2e0333a3e18051023 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-acc253ec37a408c17f258ddf1f3f911cf0dd0c5bce8c487b2e0333a3e18051023 |
container_end_page | 767 |
container_issue | 3 |
container_start_page | 757 |
container_title | Journal of dynamical and control systems |
container_volume | 29 |
creator | Garcia, Ronaldo Koiller, Jair Reznik, Dan |
description | We give closed-form expressions for recently discovered invariants of Poncelet N-periodic trajectories in the elliptic billiard with spatial integrals evaluated over the boundary of the elliptic billiard. The integrand is weighed by a measure equal to the density of rays hitting a given boundary point. We find that aperiodic averages are smooth and monotonic on caustic eccentricity, and are consistent with the invariant values predicted at the discrete caustic parameters which admit a given N-periodic family. Our results are verified by numerical simulation. |
doi_str_mv | 10.1007/s10883-022-09608-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2867583753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2867583753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-acc253ec37a408c17f258ddf1f3f911cf0dd0c5bce8c487b2e0333a3e18051023</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wNOC5-gk0zTZi6ClaqHgQT2HNJvUlHW7JqnSf290BW-e5jG894b5CDlncMkA5FVioBRS4JxCPQVF9wdkxIREqqa1OiwaZE255JNjcpLSBgBqhWpErucphzeTQ7eu5m0b-hxsdRuKMrGpFt2HicF0OVWfIb9WT31xmrbss1tH06ZTcuTLcGe_c0xe7ubPswe6fLxfzG6W1CKrMzXWcoHOojQTUJZJz4VqGs88-pox66FpwIqVdcpOlFxxB4ho0DEFggHHMbkYevu4fd-5lPVmu4tdOam5mkqhUAosLj64bNymFJ3XfSzPxb1moL856YGTLpz0Dye9LyEcQqmYu7WLf9X_pL4A1LNrpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2867583753</pqid></control><display><type>article</type><title>Estimating Elliptic Billiard Invariants with Spatial Integrals</title><source>Springer Nature</source><creator>Garcia, Ronaldo ; Koiller, Jair ; Reznik, Dan</creator><creatorcontrib>Garcia, Ronaldo ; Koiller, Jair ; Reznik, Dan</creatorcontrib><description>We give closed-form expressions for recently discovered invariants of Poncelet N-periodic trajectories in the elliptic billiard with spatial integrals evaluated over the boundary of the elliptic billiard. The integrand is weighed by a measure equal to the density of rays hitting a given boundary point. We find that aperiodic averages are smooth and monotonic on caustic eccentricity, and are consistent with the invariant values predicted at the discrete caustic parameters which admit a given N-periodic family. Our results are verified by numerical simulation.</description><identifier>ISSN: 1079-2724</identifier><identifier>EISSN: 1573-8698</identifier><identifier>DOI: 10.1007/s10883-022-09608-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Control ; Dynamical Systems ; Dynamical Systems and Ergodic Theory ; Integrals ; Invariants ; Mathematics ; Mathematics and Statistics ; Systems Theory ; Vibration</subject><ispartof>Journal of dynamical and control systems, 2023-09, Vol.29 (3), p.757-767</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-acc253ec37a408c17f258ddf1f3f911cf0dd0c5bce8c487b2e0333a3e18051023</citedby><cites>FETCH-LOGICAL-c319t-acc253ec37a408c17f258ddf1f3f911cf0dd0c5bce8c487b2e0333a3e18051023</cites><orcidid>0000-0001-8876-6956 ; 0000-0002-0542-6014 ; 0000-0001-6889-9612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Garcia, Ronaldo</creatorcontrib><creatorcontrib>Koiller, Jair</creatorcontrib><creatorcontrib>Reznik, Dan</creatorcontrib><title>Estimating Elliptic Billiard Invariants with Spatial Integrals</title><title>Journal of dynamical and control systems</title><addtitle>J Dyn Control Syst</addtitle><description>We give closed-form expressions for recently discovered invariants of Poncelet N-periodic trajectories in the elliptic billiard with spatial integrals evaluated over the boundary of the elliptic billiard. The integrand is weighed by a measure equal to the density of rays hitting a given boundary point. We find that aperiodic averages are smooth and monotonic on caustic eccentricity, and are consistent with the invariant values predicted at the discrete caustic parameters which admit a given N-periodic family. Our results are verified by numerical simulation.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Integrals</subject><subject>Invariants</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Systems Theory</subject><subject>Vibration</subject><issn>1079-2724</issn><issn>1573-8698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wNOC5-gk0zTZi6ClaqHgQT2HNJvUlHW7JqnSf290BW-e5jG894b5CDlncMkA5FVioBRS4JxCPQVF9wdkxIREqqa1OiwaZE255JNjcpLSBgBqhWpErucphzeTQ7eu5m0b-hxsdRuKMrGpFt2HicF0OVWfIb9WT31xmrbss1tH06ZTcuTLcGe_c0xe7ubPswe6fLxfzG6W1CKrMzXWcoHOojQTUJZJz4VqGs88-pox66FpwIqVdcpOlFxxB4ho0DEFggHHMbkYevu4fd-5lPVmu4tdOam5mkqhUAosLj64bNymFJ3XfSzPxb1moL856YGTLpz0Dye9LyEcQqmYu7WLf9X_pL4A1LNrpA</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Garcia, Ronaldo</creator><creator>Koiller, Jair</creator><creator>Reznik, Dan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8876-6956</orcidid><orcidid>https://orcid.org/0000-0002-0542-6014</orcidid><orcidid>https://orcid.org/0000-0001-6889-9612</orcidid></search><sort><creationdate>20230901</creationdate><title>Estimating Elliptic Billiard Invariants with Spatial Integrals</title><author>Garcia, Ronaldo ; Koiller, Jair ; Reznik, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-acc253ec37a408c17f258ddf1f3f911cf0dd0c5bce8c487b2e0333a3e18051023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Integrals</topic><topic>Invariants</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Systems Theory</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Ronaldo</creatorcontrib><creatorcontrib>Koiller, Jair</creatorcontrib><creatorcontrib>Reznik, Dan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamical and control systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, Ronaldo</au><au>Koiller, Jair</au><au>Reznik, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Elliptic Billiard Invariants with Spatial Integrals</atitle><jtitle>Journal of dynamical and control systems</jtitle><stitle>J Dyn Control Syst</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>29</volume><issue>3</issue><spage>757</spage><epage>767</epage><pages>757-767</pages><issn>1079-2724</issn><eissn>1573-8698</eissn><abstract>We give closed-form expressions for recently discovered invariants of Poncelet N-periodic trajectories in the elliptic billiard with spatial integrals evaluated over the boundary of the elliptic billiard. The integrand is weighed by a measure equal to the density of rays hitting a given boundary point. We find that aperiodic averages are smooth and monotonic on caustic eccentricity, and are consistent with the invariant values predicted at the discrete caustic parameters which admit a given N-periodic family. Our results are verified by numerical simulation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10883-022-09608-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8876-6956</orcidid><orcidid>https://orcid.org/0000-0002-0542-6014</orcidid><orcidid>https://orcid.org/0000-0001-6889-9612</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1079-2724 |
ispartof | Journal of dynamical and control systems, 2023-09, Vol.29 (3), p.757-767 |
issn | 1079-2724 1573-8698 |
language | eng |
recordid | cdi_proquest_journals_2867583753 |
source | Springer Nature |
subjects | Calculus of Variations and Optimal Control Optimization Control Dynamical Systems Dynamical Systems and Ergodic Theory Integrals Invariants Mathematics Mathematics and Statistics Systems Theory Vibration |
title | Estimating Elliptic Billiard Invariants with Spatial Integrals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Elliptic%20Billiard%20Invariants%20with%20Spatial%20Integrals&rft.jtitle=Journal%20of%20dynamical%20and%20control%20systems&rft.au=Garcia,%20Ronaldo&rft.date=2023-09-01&rft.volume=29&rft.issue=3&rft.spage=757&rft.epage=767&rft.pages=757-767&rft.issn=1079-2724&rft.eissn=1573-8698&rft_id=info:doi/10.1007/s10883-022-09608-y&rft_dat=%3Cproquest_cross%3E2867583753%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-acc253ec37a408c17f258ddf1f3f911cf0dd0c5bce8c487b2e0333a3e18051023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2867583753&rft_id=info:pmid/&rfr_iscdi=true |