Loading…

Estimating Elliptic Billiard Invariants with Spatial Integrals

We give closed-form expressions for recently discovered invariants of Poncelet N-periodic trajectories in the elliptic billiard with spatial integrals evaluated over the boundary of the elliptic billiard. The integrand is weighed by a measure equal to the density of rays hitting a given boundary poi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dynamical and control systems 2023-09, Vol.29 (3), p.757-767
Main Authors: Garcia, Ronaldo, Koiller, Jair, Reznik, Dan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-acc253ec37a408c17f258ddf1f3f911cf0dd0c5bce8c487b2e0333a3e18051023
cites cdi_FETCH-LOGICAL-c319t-acc253ec37a408c17f258ddf1f3f911cf0dd0c5bce8c487b2e0333a3e18051023
container_end_page 767
container_issue 3
container_start_page 757
container_title Journal of dynamical and control systems
container_volume 29
creator Garcia, Ronaldo
Koiller, Jair
Reznik, Dan
description We give closed-form expressions for recently discovered invariants of Poncelet N-periodic trajectories in the elliptic billiard with spatial integrals evaluated over the boundary of the elliptic billiard. The integrand is weighed by a measure equal to the density of rays hitting a given boundary point. We find that aperiodic averages are smooth and monotonic on caustic eccentricity, and are consistent with the invariant values predicted at the discrete caustic parameters which admit a given N-periodic family. Our results are verified by numerical simulation.
doi_str_mv 10.1007/s10883-022-09608-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2867583753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2867583753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-acc253ec37a408c17f258ddf1f3f911cf0dd0c5bce8c487b2e0333a3e18051023</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wNOC5-gk0zTZi6ClaqHgQT2HNJvUlHW7JqnSf290BW-e5jG894b5CDlncMkA5FVioBRS4JxCPQVF9wdkxIREqqa1OiwaZE255JNjcpLSBgBqhWpErucphzeTQ7eu5m0b-hxsdRuKMrGpFt2HicF0OVWfIb9WT31xmrbss1tH06ZTcuTLcGe_c0xe7ubPswe6fLxfzG6W1CKrMzXWcoHOojQTUJZJz4VqGs88-pox66FpwIqVdcpOlFxxB4ho0DEFggHHMbkYevu4fd-5lPVmu4tdOam5mkqhUAosLj64bNymFJ3XfSzPxb1moL856YGTLpz0Dye9LyEcQqmYu7WLf9X_pL4A1LNrpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2867583753</pqid></control><display><type>article</type><title>Estimating Elliptic Billiard Invariants with Spatial Integrals</title><source>Springer Nature</source><creator>Garcia, Ronaldo ; Koiller, Jair ; Reznik, Dan</creator><creatorcontrib>Garcia, Ronaldo ; Koiller, Jair ; Reznik, Dan</creatorcontrib><description>We give closed-form expressions for recently discovered invariants of Poncelet N-periodic trajectories in the elliptic billiard with spatial integrals evaluated over the boundary of the elliptic billiard. The integrand is weighed by a measure equal to the density of rays hitting a given boundary point. We find that aperiodic averages are smooth and monotonic on caustic eccentricity, and are consistent with the invariant values predicted at the discrete caustic parameters which admit a given N-periodic family. Our results are verified by numerical simulation.</description><identifier>ISSN: 1079-2724</identifier><identifier>EISSN: 1573-8698</identifier><identifier>DOI: 10.1007/s10883-022-09608-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Control ; Dynamical Systems ; Dynamical Systems and Ergodic Theory ; Integrals ; Invariants ; Mathematics ; Mathematics and Statistics ; Systems Theory ; Vibration</subject><ispartof>Journal of dynamical and control systems, 2023-09, Vol.29 (3), p.757-767</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-acc253ec37a408c17f258ddf1f3f911cf0dd0c5bce8c487b2e0333a3e18051023</citedby><cites>FETCH-LOGICAL-c319t-acc253ec37a408c17f258ddf1f3f911cf0dd0c5bce8c487b2e0333a3e18051023</cites><orcidid>0000-0001-8876-6956 ; 0000-0002-0542-6014 ; 0000-0001-6889-9612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Garcia, Ronaldo</creatorcontrib><creatorcontrib>Koiller, Jair</creatorcontrib><creatorcontrib>Reznik, Dan</creatorcontrib><title>Estimating Elliptic Billiard Invariants with Spatial Integrals</title><title>Journal of dynamical and control systems</title><addtitle>J Dyn Control Syst</addtitle><description>We give closed-form expressions for recently discovered invariants of Poncelet N-periodic trajectories in the elliptic billiard with spatial integrals evaluated over the boundary of the elliptic billiard. The integrand is weighed by a measure equal to the density of rays hitting a given boundary point. We find that aperiodic averages are smooth and monotonic on caustic eccentricity, and are consistent with the invariant values predicted at the discrete caustic parameters which admit a given N-periodic family. Our results are verified by numerical simulation.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Integrals</subject><subject>Invariants</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Systems Theory</subject><subject>Vibration</subject><issn>1079-2724</issn><issn>1573-8698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wNOC5-gk0zTZi6ClaqHgQT2HNJvUlHW7JqnSf290BW-e5jG894b5CDlncMkA5FVioBRS4JxCPQVF9wdkxIREqqa1OiwaZE255JNjcpLSBgBqhWpErucphzeTQ7eu5m0b-hxsdRuKMrGpFt2HicF0OVWfIb9WT31xmrbss1tH06ZTcuTLcGe_c0xe7ubPswe6fLxfzG6W1CKrMzXWcoHOojQTUJZJz4VqGs88-pox66FpwIqVdcpOlFxxB4ho0DEFggHHMbkYevu4fd-5lPVmu4tdOam5mkqhUAosLj64bNymFJ3XfSzPxb1moL856YGTLpz0Dye9LyEcQqmYu7WLf9X_pL4A1LNrpA</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Garcia, Ronaldo</creator><creator>Koiller, Jair</creator><creator>Reznik, Dan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8876-6956</orcidid><orcidid>https://orcid.org/0000-0002-0542-6014</orcidid><orcidid>https://orcid.org/0000-0001-6889-9612</orcidid></search><sort><creationdate>20230901</creationdate><title>Estimating Elliptic Billiard Invariants with Spatial Integrals</title><author>Garcia, Ronaldo ; Koiller, Jair ; Reznik, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-acc253ec37a408c17f258ddf1f3f911cf0dd0c5bce8c487b2e0333a3e18051023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Integrals</topic><topic>Invariants</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Systems Theory</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Ronaldo</creatorcontrib><creatorcontrib>Koiller, Jair</creatorcontrib><creatorcontrib>Reznik, Dan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamical and control systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, Ronaldo</au><au>Koiller, Jair</au><au>Reznik, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Elliptic Billiard Invariants with Spatial Integrals</atitle><jtitle>Journal of dynamical and control systems</jtitle><stitle>J Dyn Control Syst</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>29</volume><issue>3</issue><spage>757</spage><epage>767</epage><pages>757-767</pages><issn>1079-2724</issn><eissn>1573-8698</eissn><abstract>We give closed-form expressions for recently discovered invariants of Poncelet N-periodic trajectories in the elliptic billiard with spatial integrals evaluated over the boundary of the elliptic billiard. The integrand is weighed by a measure equal to the density of rays hitting a given boundary point. We find that aperiodic averages are smooth and monotonic on caustic eccentricity, and are consistent with the invariant values predicted at the discrete caustic parameters which admit a given N-periodic family. Our results are verified by numerical simulation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10883-022-09608-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8876-6956</orcidid><orcidid>https://orcid.org/0000-0002-0542-6014</orcidid><orcidid>https://orcid.org/0000-0001-6889-9612</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1079-2724
ispartof Journal of dynamical and control systems, 2023-09, Vol.29 (3), p.757-767
issn 1079-2724
1573-8698
language eng
recordid cdi_proquest_journals_2867583753
source Springer Nature
subjects Calculus of Variations and Optimal Control
Optimization
Control
Dynamical Systems
Dynamical Systems and Ergodic Theory
Integrals
Invariants
Mathematics
Mathematics and Statistics
Systems Theory
Vibration
title Estimating Elliptic Billiard Invariants with Spatial Integrals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Elliptic%20Billiard%20Invariants%20with%20Spatial%20Integrals&rft.jtitle=Journal%20of%20dynamical%20and%20control%20systems&rft.au=Garcia,%20Ronaldo&rft.date=2023-09-01&rft.volume=29&rft.issue=3&rft.spage=757&rft.epage=767&rft.pages=757-767&rft.issn=1079-2724&rft.eissn=1573-8698&rft_id=info:doi/10.1007/s10883-022-09608-y&rft_dat=%3Cproquest_cross%3E2867583753%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-acc253ec37a408c17f258ddf1f3f911cf0dd0c5bce8c487b2e0333a3e18051023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2867583753&rft_id=info:pmid/&rfr_iscdi=true