Loading…

Synaptic learning behavior and neuromorphic computing of Au/MXene/NiO/FTO artificial synapse

A traditional von Neumann structure cannot adapt to the rapid development of artificial intelligence. To solve this issue, memristors have emerged as the preferred devices for simulating synaptic behavior and enabling neural morphological computations. In this work, Au/NiO/FTO and Au/MXene/NiO/FTO h...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2023-09, Vol.123 (13)
Main Authors: Fang, Junlin, Tang, Zhenhua, Li, Xi-Qi, Fan, Zhao-Yuan, Jiang, Yan-Ping, Liu, Qiu-Xiang, Tang, Xin-Gui, Fan, Jing-Min, Gao, Ju, Shang, Jie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A traditional von Neumann structure cannot adapt to the rapid development of artificial intelligence. To solve this issue, memristors have emerged as the preferred devices for simulating synaptic behavior and enabling neural morphological computations. In this work, Au/NiO/FTO and Au/MXene/NiO/FTO heterojunction memristors were prepared on FTO/glass by a sol-gel method. A comparative analysis was carried out to investigate the changes in electrical properties and synaptic behavior of the memristors upon the addition of MXene films. Au/MXene/NiO/FTO artificial synapses not only have smaller threshold voltage, larger switching ratio, and more intermediate conductivity states but also can simulate important synaptic behavior. The results show that the Au/MXene/NiO/FTO heterojunction memristor has better weight update linearity and excellent conductivity modulation behavior in addition to long data retention time characteristics. Utilizing a convolutional neural network architecture, the recognition accuracy of the MNIST and Fashion-MNIST datasets was improved to 96.8% and 81.7%, respectively, through the implementation of improved random adaptive algorithms. These results provide a feasible approach for combining MXene materials with metal oxides to prepare artificial synapses for the implementation of neuromorphic computing.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0167497