Loading…
ChatGPT Assisting Diagnosis of Neuro-ophthalmology Diseases Based on Case Reports
Objective: To evaluate the efficiency of large language models (LLMs) such as ChatGPT to assist in diagnosing neuro-ophthalmic diseases based on detailed case descriptions. Methods: We selected 22 different case reports of neuro-ophthalmic diseases from a publicly available online database. These ca...
Saved in:
Published in: | arXiv.org 2023-09 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Objective: To evaluate the efficiency of large language models (LLMs) such as ChatGPT to assist in diagnosing neuro-ophthalmic diseases based on detailed case descriptions. Methods: We selected 22 different case reports of neuro-ophthalmic diseases from a publicly available online database. These cases included a wide range of chronic and acute diseases that are commonly seen by neuro-ophthalmic sub-specialists. We inserted the text from each case as a new prompt into both ChatGPT v3.5 and ChatGPT Plus v4.0 and asked for the most probable diagnosis. We then presented the exact information to two neuro-ophthalmologists and recorded their diagnoses followed by comparison to responses from both versions of ChatGPT. Results: ChatGPT v3.5, ChatGPT Plus v4.0, and the two neuro-ophthalmologists were correct in 13 (59%), 18 (82%), 19 (86%), and 19 (86%) out of 22 cases, respectively. The agreement between the various diagnostic sources were as follows: ChatGPT v3.5 and ChatGPT Plus v4.0, 13 (59%); ChatGPT v3.5 and the first neuro-ophthalmologist, 12 (55%); ChatGPT v3.5 and the second neuro-ophthalmologist, 12 (55%); ChatGPT Plus v4.0 and the first neuro-ophthalmologist, 17 (77%); ChatGPT Plus v4.0 and the second neuro-ophthalmologist, 16 (73%); and first and second neuro-ophthalmologists 17 (17%). Conclusions: The accuracy of ChatGPT v3.5 and ChatGPT Plus v4.0 in diagnosing patients with neuro-ophthalmic diseases was 59% and 82%, respectively. With further development, ChatGPT Plus v4.0 may have potential to be used in clinical care settings to assist clinicians in providing quick, accurate diagnoses of patients in neuro-ophthalmology. The applicability of using LLMs like ChatGPT in clinical settings that lack access to subspeciality trained neuro-ophthalmologists deserves further research. |
---|---|
ISSN: | 2331-8422 |