Loading…
Bayesian optimisation approach to quantify the effect of input parameter uncertainty on predictions of numerical physics simulations
An understanding of how input parameter uncertainty in the numerical simulation of physical models leads to simulation output uncertainty is a challenging task. Common methods for quantifying output uncertainty, such as performing a grid or random search over the model input space, are computational...
Saved in:
Published in: | arXiv.org 2023-09 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | McCallum, Samuel G Lerpiniére, James E Jensen, Kjeld O Walker, Alison B |
description | An understanding of how input parameter uncertainty in the numerical simulation of physical models leads to simulation output uncertainty is a challenging task. Common methods for quantifying output uncertainty, such as performing a grid or random search over the model input space, are computationally intractable for a large number of input parameters, represented by a high-dimensional input space. It is therefore generally unclear as to whether a numerical simulation can reproduce a particular outcome (e.g. a set of experimental results) with a plausible set of model input parameters. Here, we present a method for efficiently searching the input space using Bayesian Optimisation to minimise the difference between the simulation output and a set of experimental results. Our method allows explicit evaluation of the probability that the simulation can reproduce the measured experimental results in the region of input space defined by the uncertainty in each input parameter. We apply this method to the simulation of charge-carrier dynamics in the perovskite semiconductor methyl-ammonium lead iodide MAPbI\(_3\) that has attracted attention as a light harvesting material in solar cells. From our analysis we conclude that the formation of large polarons, quasiparticles created by the coupling of excess electrons or holes with ionic vibrations, cannot explain the experimentally observed temperature dependence of electron mobility. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2868474551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2868474551</sourcerecordid><originalsourceid>FETCH-proquest_journals_28684745513</originalsourceid><addsrcrecordid>eNqNjkGKwkAQRZsBQVHvUOBaiJ1Es1ZG5gCzl6KtJiVJd9tVvch-Dj5R5gCz-ov_eP9_mJWt68O-a6xdmq3Io6oqezzZtq1X5ueMEwljgJiURxZUjgEwpRzR9aARngWDsp9AewLynpxC9MAhFYWEGUdSylCCo6zIQSeYDSnTnd1LJi86lJEyOxwg9ZOwExAey_Bek41ZeByEtn-5Nrvr5_flaz-feBYSvT1iyWGubrY7ds2padtD_T_qF7WvVFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2868474551</pqid></control><display><type>article</type><title>Bayesian optimisation approach to quantify the effect of input parameter uncertainty on predictions of numerical physics simulations</title><source>Publicly Available Content Database</source><creator>McCallum, Samuel G ; Lerpiniére, James E ; Jensen, Kjeld O ; Walker, Alison B</creator><creatorcontrib>McCallum, Samuel G ; Lerpiniére, James E ; Jensen, Kjeld O ; Walker, Alison B</creatorcontrib><description>An understanding of how input parameter uncertainty in the numerical simulation of physical models leads to simulation output uncertainty is a challenging task. Common methods for quantifying output uncertainty, such as performing a grid or random search over the model input space, are computationally intractable for a large number of input parameters, represented by a high-dimensional input space. It is therefore generally unclear as to whether a numerical simulation can reproduce a particular outcome (e.g. a set of experimental results) with a plausible set of model input parameters. Here, we present a method for efficiently searching the input space using Bayesian Optimisation to minimise the difference between the simulation output and a set of experimental results. Our method allows explicit evaluation of the probability that the simulation can reproduce the measured experimental results in the region of input space defined by the uncertainty in each input parameter. We apply this method to the simulation of charge-carrier dynamics in the perovskite semiconductor methyl-ammonium lead iodide MAPbI\(_3\) that has attracted attention as a light harvesting material in solar cells. From our analysis we conclude that the formation of large polarons, quasiparticles created by the coupling of excess electrons or holes with ionic vibrations, cannot explain the experimentally observed temperature dependence of electron mobility.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Current carriers ; Electron mobility ; Electrons ; Elementary excitations ; Mathematical models ; Numerical prediction ; Optimization ; Parameter uncertainty ; Perovskites ; Photovoltaic cells ; Radioactivity ; Simulation ; Solar cells ; Temperature dependence</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2868474551?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>McCallum, Samuel G</creatorcontrib><creatorcontrib>Lerpiniére, James E</creatorcontrib><creatorcontrib>Jensen, Kjeld O</creatorcontrib><creatorcontrib>Walker, Alison B</creatorcontrib><title>Bayesian optimisation approach to quantify the effect of input parameter uncertainty on predictions of numerical physics simulations</title><title>arXiv.org</title><description>An understanding of how input parameter uncertainty in the numerical simulation of physical models leads to simulation output uncertainty is a challenging task. Common methods for quantifying output uncertainty, such as performing a grid or random search over the model input space, are computationally intractable for a large number of input parameters, represented by a high-dimensional input space. It is therefore generally unclear as to whether a numerical simulation can reproduce a particular outcome (e.g. a set of experimental results) with a plausible set of model input parameters. Here, we present a method for efficiently searching the input space using Bayesian Optimisation to minimise the difference between the simulation output and a set of experimental results. Our method allows explicit evaluation of the probability that the simulation can reproduce the measured experimental results in the region of input space defined by the uncertainty in each input parameter. We apply this method to the simulation of charge-carrier dynamics in the perovskite semiconductor methyl-ammonium lead iodide MAPbI\(_3\) that has attracted attention as a light harvesting material in solar cells. From our analysis we conclude that the formation of large polarons, quasiparticles created by the coupling of excess electrons or holes with ionic vibrations, cannot explain the experimentally observed temperature dependence of electron mobility.</description><subject>Bayesian analysis</subject><subject>Current carriers</subject><subject>Electron mobility</subject><subject>Electrons</subject><subject>Elementary excitations</subject><subject>Mathematical models</subject><subject>Numerical prediction</subject><subject>Optimization</subject><subject>Parameter uncertainty</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Radioactivity</subject><subject>Simulation</subject><subject>Solar cells</subject><subject>Temperature dependence</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjkGKwkAQRZsBQVHvUOBaiJ1Es1ZG5gCzl6KtJiVJd9tVvch-Dj5R5gCz-ov_eP9_mJWt68O-a6xdmq3Io6oqezzZtq1X5ueMEwljgJiURxZUjgEwpRzR9aARngWDsp9AewLynpxC9MAhFYWEGUdSylCCo6zIQSeYDSnTnd1LJi86lJEyOxwg9ZOwExAey_Bek41ZeByEtn-5Nrvr5_flaz-feBYSvT1iyWGubrY7ds2padtD_T_qF7WvVFY</recordid><startdate>20230921</startdate><enddate>20230921</enddate><creator>McCallum, Samuel G</creator><creator>Lerpiniére, James E</creator><creator>Jensen, Kjeld O</creator><creator>Walker, Alison B</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230921</creationdate><title>Bayesian optimisation approach to quantify the effect of input parameter uncertainty on predictions of numerical physics simulations</title><author>McCallum, Samuel G ; Lerpiniére, James E ; Jensen, Kjeld O ; Walker, Alison B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28684745513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayesian analysis</topic><topic>Current carriers</topic><topic>Electron mobility</topic><topic>Electrons</topic><topic>Elementary excitations</topic><topic>Mathematical models</topic><topic>Numerical prediction</topic><topic>Optimization</topic><topic>Parameter uncertainty</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Radioactivity</topic><topic>Simulation</topic><topic>Solar cells</topic><topic>Temperature dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>McCallum, Samuel G</creatorcontrib><creatorcontrib>Lerpiniére, James E</creatorcontrib><creatorcontrib>Jensen, Kjeld O</creatorcontrib><creatorcontrib>Walker, Alison B</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCallum, Samuel G</au><au>Lerpiniére, James E</au><au>Jensen, Kjeld O</au><au>Walker, Alison B</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Bayesian optimisation approach to quantify the effect of input parameter uncertainty on predictions of numerical physics simulations</atitle><jtitle>arXiv.org</jtitle><date>2023-09-21</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>An understanding of how input parameter uncertainty in the numerical simulation of physical models leads to simulation output uncertainty is a challenging task. Common methods for quantifying output uncertainty, such as performing a grid or random search over the model input space, are computationally intractable for a large number of input parameters, represented by a high-dimensional input space. It is therefore generally unclear as to whether a numerical simulation can reproduce a particular outcome (e.g. a set of experimental results) with a plausible set of model input parameters. Here, we present a method for efficiently searching the input space using Bayesian Optimisation to minimise the difference between the simulation output and a set of experimental results. Our method allows explicit evaluation of the probability that the simulation can reproduce the measured experimental results in the region of input space defined by the uncertainty in each input parameter. We apply this method to the simulation of charge-carrier dynamics in the perovskite semiconductor methyl-ammonium lead iodide MAPbI\(_3\) that has attracted attention as a light harvesting material in solar cells. From our analysis we conclude that the formation of large polarons, quasiparticles created by the coupling of excess electrons or holes with ionic vibrations, cannot explain the experimentally observed temperature dependence of electron mobility.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2868474551 |
source | Publicly Available Content Database |
subjects | Bayesian analysis Current carriers Electron mobility Electrons Elementary excitations Mathematical models Numerical prediction Optimization Parameter uncertainty Perovskites Photovoltaic cells Radioactivity Simulation Solar cells Temperature dependence |
title | Bayesian optimisation approach to quantify the effect of input parameter uncertainty on predictions of numerical physics simulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A18%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Bayesian%20optimisation%20approach%20to%20quantify%20the%20effect%20of%20input%20parameter%20uncertainty%20on%20predictions%20of%20numerical%20physics%20simulations&rft.jtitle=arXiv.org&rft.au=McCallum,%20Samuel%20G&rft.date=2023-09-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2868474551%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28684745513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2868474551&rft_id=info:pmid/&rfr_iscdi=true |