Loading…

Bayesian optimisation approach to quantify the effect of input parameter uncertainty on predictions of numerical physics simulations

An understanding of how input parameter uncertainty in the numerical simulation of physical models leads to simulation output uncertainty is a challenging task. Common methods for quantifying output uncertainty, such as performing a grid or random search over the model input space, are computational...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-09
Main Authors: McCallum, Samuel G, Lerpiniére, James E, Jensen, Kjeld O, Walker, Alison B
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator McCallum, Samuel G
Lerpiniére, James E
Jensen, Kjeld O
Walker, Alison B
description An understanding of how input parameter uncertainty in the numerical simulation of physical models leads to simulation output uncertainty is a challenging task. Common methods for quantifying output uncertainty, such as performing a grid or random search over the model input space, are computationally intractable for a large number of input parameters, represented by a high-dimensional input space. It is therefore generally unclear as to whether a numerical simulation can reproduce a particular outcome (e.g. a set of experimental results) with a plausible set of model input parameters. Here, we present a method for efficiently searching the input space using Bayesian Optimisation to minimise the difference between the simulation output and a set of experimental results. Our method allows explicit evaluation of the probability that the simulation can reproduce the measured experimental results in the region of input space defined by the uncertainty in each input parameter. We apply this method to the simulation of charge-carrier dynamics in the perovskite semiconductor methyl-ammonium lead iodide MAPbI\(_3\) that has attracted attention as a light harvesting material in solar cells. From our analysis we conclude that the formation of large polarons, quasiparticles created by the coupling of excess electrons or holes with ionic vibrations, cannot explain the experimentally observed temperature dependence of electron mobility.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2868474551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2868474551</sourcerecordid><originalsourceid>FETCH-proquest_journals_28684745513</originalsourceid><addsrcrecordid>eNqNjkGKwkAQRZsBQVHvUOBaiJ1Es1ZG5gCzl6KtJiVJd9tVvch-Dj5R5gCz-ov_eP9_mJWt68O-a6xdmq3Io6oqezzZtq1X5ueMEwljgJiURxZUjgEwpRzR9aARngWDsp9AewLynpxC9MAhFYWEGUdSylCCo6zIQSeYDSnTnd1LJi86lJEyOxwg9ZOwExAey_Bek41ZeByEtn-5Nrvr5_flaz-feBYSvT1iyWGubrY7ds2padtD_T_qF7WvVFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2868474551</pqid></control><display><type>article</type><title>Bayesian optimisation approach to quantify the effect of input parameter uncertainty on predictions of numerical physics simulations</title><source>Publicly Available Content Database</source><creator>McCallum, Samuel G ; Lerpiniére, James E ; Jensen, Kjeld O ; Walker, Alison B</creator><creatorcontrib>McCallum, Samuel G ; Lerpiniére, James E ; Jensen, Kjeld O ; Walker, Alison B</creatorcontrib><description>An understanding of how input parameter uncertainty in the numerical simulation of physical models leads to simulation output uncertainty is a challenging task. Common methods for quantifying output uncertainty, such as performing a grid or random search over the model input space, are computationally intractable for a large number of input parameters, represented by a high-dimensional input space. It is therefore generally unclear as to whether a numerical simulation can reproduce a particular outcome (e.g. a set of experimental results) with a plausible set of model input parameters. Here, we present a method for efficiently searching the input space using Bayesian Optimisation to minimise the difference between the simulation output and a set of experimental results. Our method allows explicit evaluation of the probability that the simulation can reproduce the measured experimental results in the region of input space defined by the uncertainty in each input parameter. We apply this method to the simulation of charge-carrier dynamics in the perovskite semiconductor methyl-ammonium lead iodide MAPbI\(_3\) that has attracted attention as a light harvesting material in solar cells. From our analysis we conclude that the formation of large polarons, quasiparticles created by the coupling of excess electrons or holes with ionic vibrations, cannot explain the experimentally observed temperature dependence of electron mobility.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Current carriers ; Electron mobility ; Electrons ; Elementary excitations ; Mathematical models ; Numerical prediction ; Optimization ; Parameter uncertainty ; Perovskites ; Photovoltaic cells ; Radioactivity ; Simulation ; Solar cells ; Temperature dependence</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2868474551?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>McCallum, Samuel G</creatorcontrib><creatorcontrib>Lerpiniére, James E</creatorcontrib><creatorcontrib>Jensen, Kjeld O</creatorcontrib><creatorcontrib>Walker, Alison B</creatorcontrib><title>Bayesian optimisation approach to quantify the effect of input parameter uncertainty on predictions of numerical physics simulations</title><title>arXiv.org</title><description>An understanding of how input parameter uncertainty in the numerical simulation of physical models leads to simulation output uncertainty is a challenging task. Common methods for quantifying output uncertainty, such as performing a grid or random search over the model input space, are computationally intractable for a large number of input parameters, represented by a high-dimensional input space. It is therefore generally unclear as to whether a numerical simulation can reproduce a particular outcome (e.g. a set of experimental results) with a plausible set of model input parameters. Here, we present a method for efficiently searching the input space using Bayesian Optimisation to minimise the difference between the simulation output and a set of experimental results. Our method allows explicit evaluation of the probability that the simulation can reproduce the measured experimental results in the region of input space defined by the uncertainty in each input parameter. We apply this method to the simulation of charge-carrier dynamics in the perovskite semiconductor methyl-ammonium lead iodide MAPbI\(_3\) that has attracted attention as a light harvesting material in solar cells. From our analysis we conclude that the formation of large polarons, quasiparticles created by the coupling of excess electrons or holes with ionic vibrations, cannot explain the experimentally observed temperature dependence of electron mobility.</description><subject>Bayesian analysis</subject><subject>Current carriers</subject><subject>Electron mobility</subject><subject>Electrons</subject><subject>Elementary excitations</subject><subject>Mathematical models</subject><subject>Numerical prediction</subject><subject>Optimization</subject><subject>Parameter uncertainty</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Radioactivity</subject><subject>Simulation</subject><subject>Solar cells</subject><subject>Temperature dependence</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjkGKwkAQRZsBQVHvUOBaiJ1Es1ZG5gCzl6KtJiVJd9tVvch-Dj5R5gCz-ov_eP9_mJWt68O-a6xdmq3Io6oqezzZtq1X5ueMEwljgJiURxZUjgEwpRzR9aARngWDsp9AewLynpxC9MAhFYWEGUdSylCCo6zIQSeYDSnTnd1LJi86lJEyOxwg9ZOwExAey_Bek41ZeByEtn-5Nrvr5_flaz-feBYSvT1iyWGubrY7ds2padtD_T_qF7WvVFY</recordid><startdate>20230921</startdate><enddate>20230921</enddate><creator>McCallum, Samuel G</creator><creator>Lerpiniére, James E</creator><creator>Jensen, Kjeld O</creator><creator>Walker, Alison B</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230921</creationdate><title>Bayesian optimisation approach to quantify the effect of input parameter uncertainty on predictions of numerical physics simulations</title><author>McCallum, Samuel G ; Lerpiniére, James E ; Jensen, Kjeld O ; Walker, Alison B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28684745513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayesian analysis</topic><topic>Current carriers</topic><topic>Electron mobility</topic><topic>Electrons</topic><topic>Elementary excitations</topic><topic>Mathematical models</topic><topic>Numerical prediction</topic><topic>Optimization</topic><topic>Parameter uncertainty</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Radioactivity</topic><topic>Simulation</topic><topic>Solar cells</topic><topic>Temperature dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>McCallum, Samuel G</creatorcontrib><creatorcontrib>Lerpiniére, James E</creatorcontrib><creatorcontrib>Jensen, Kjeld O</creatorcontrib><creatorcontrib>Walker, Alison B</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCallum, Samuel G</au><au>Lerpiniére, James E</au><au>Jensen, Kjeld O</au><au>Walker, Alison B</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Bayesian optimisation approach to quantify the effect of input parameter uncertainty on predictions of numerical physics simulations</atitle><jtitle>arXiv.org</jtitle><date>2023-09-21</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>An understanding of how input parameter uncertainty in the numerical simulation of physical models leads to simulation output uncertainty is a challenging task. Common methods for quantifying output uncertainty, such as performing a grid or random search over the model input space, are computationally intractable for a large number of input parameters, represented by a high-dimensional input space. It is therefore generally unclear as to whether a numerical simulation can reproduce a particular outcome (e.g. a set of experimental results) with a plausible set of model input parameters. Here, we present a method for efficiently searching the input space using Bayesian Optimisation to minimise the difference between the simulation output and a set of experimental results. Our method allows explicit evaluation of the probability that the simulation can reproduce the measured experimental results in the region of input space defined by the uncertainty in each input parameter. We apply this method to the simulation of charge-carrier dynamics in the perovskite semiconductor methyl-ammonium lead iodide MAPbI\(_3\) that has attracted attention as a light harvesting material in solar cells. From our analysis we conclude that the formation of large polarons, quasiparticles created by the coupling of excess electrons or holes with ionic vibrations, cannot explain the experimentally observed temperature dependence of electron mobility.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2868474551
source Publicly Available Content Database
subjects Bayesian analysis
Current carriers
Electron mobility
Electrons
Elementary excitations
Mathematical models
Numerical prediction
Optimization
Parameter uncertainty
Perovskites
Photovoltaic cells
Radioactivity
Simulation
Solar cells
Temperature dependence
title Bayesian optimisation approach to quantify the effect of input parameter uncertainty on predictions of numerical physics simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A18%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Bayesian%20optimisation%20approach%20to%20quantify%20the%20effect%20of%20input%20parameter%20uncertainty%20on%20predictions%20of%20numerical%20physics%20simulations&rft.jtitle=arXiv.org&rft.au=McCallum,%20Samuel%20G&rft.date=2023-09-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2868474551%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28684745513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2868474551&rft_id=info:pmid/&rfr_iscdi=true