Loading…

DOUBLE LAYERED COMPRESSIBLE MASKS

Double-masking may be used to reduce the transmission of a virus. If additionally the masks are compressible, with different permeabilities and behaviour under compression, then it may be possible to design a mask that allows for easy breathing under normal breathing conditions, but is relatively im...

Full description

Saved in:
Bibliographic Details
Published in:The ANZIAM journal 2023-01, Vol.65 (1-2), p.29-54
Main Authors: FOWKES, N. D., MASON, D. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Double-masking may be used to reduce the transmission of a virus. If additionally the masks are compressible, with different permeabilities and behaviour under compression, then it may be possible to design a mask that allows for easy breathing under normal breathing conditions, but is relatively impermeable under coughing or sneezing conditions. Such a mask could be both comfortable to wear and effective. We obtain analytical solutions for the steady-state flow-through behaviour of such a double mask under flow-out conditions. The results show that the reduction in permeability required to produce a relatively impermeable mask under high flux expulsion (sneezing) conditions could be achieved using either a single filter compressible mask or two filters with different poroelastic parameters. The parameters can be more easily adjusted using a double mask. For both single- and double-mask cases, there is an abrupt cut off, whereby through-flux levels reduce from a maximum value to zero as pressure drop levels increase beyond a critical value. Additionally, in the double-mask case, there exists a second steady-state solution for particular parameter ranges. This second solution is unlikely to occur under normal circumstances.
ISSN:1446-1811
1446-8735
DOI:10.1017/S1446181123000056