Loading…
Continuous Solutions to Complex Hessian Equations on Hermitian Manifolds
In this paper, we study and discuss existence and continuity of solution to complex Hessian equation ( χ + d d c · ) k ∧ ω n - k = c f ω n on Hermitian manifold ( X , ω ) , where χ is some smooth real ( 1 , 1 ) - form in X and Hermitian form ω satisfies that at every given point on X , there exist a...
Saved in:
Published in: | The Journal of geometric analysis 2023-12, Vol.33 (12), Article 368 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c309t-a604749a2f3c3389183704ed2e4d63d7dde5af523faf4cd6a8f4fcab15121f213 |
container_end_page | |
container_issue | 12 |
container_start_page | |
container_title | The Journal of geometric analysis |
container_volume | 33 |
creator | Hai, Le Mau Van Quan, Vu |
description | In this paper, we study and discuss existence and continuity of solution to complex Hessian equation
(
χ
+
d
d
c
·
)
k
∧
ω
n
-
k
=
c
f
ω
n
on Hermitian manifold
(
X
,
ω
)
, where
χ
is some smooth real
(
1
,
1
)
-
form in
X
and Hermitian form
ω
satisfies that at every given point on
X
, there exist a local chart
Ω
and a smooth real-valued function
G
such that
e
G
ω
is a Kähler form on
Ω
. |
doi_str_mv | 10.1007/s12220-023-01431-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2869267751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869267751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-a604749a2f3c3389183704ed2e4d63d7dde5af523faf4cd6a8f4fcab15121f213</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz9HJ__YoZXWFFQ8qeAuxSaRLN9lNWtBvb2sFb55mmHnvDfND6JLANQFQN5lQSgEDZRgIZwTLI7QgQlQYgL4djz0IwLKi8hSd5bwF4JJxtUDrOoa-DUMccvEcu6FvY8hFH4s67vad-yzWLufWhGJ1GMy8jGEcpl3bT-NHE1ofO5vP0Yk3XXYXv3WJXu9WL_Uab57uH-rbDW4YVD02ErjilaGeNYyVFSmZAu4sddxKZpW1ThgvKPPG88ZKU3ruG_NOBKHEU8KW6GrO3ad4GFzu9TYOKYwnNS2nB5USk4rOqibFnJPzep_anUlfmoCeiOmZmB6J6R9iWo4mNpvyKA4fLv1F_-P6BofJbpM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869267751</pqid></control><display><type>article</type><title>Continuous Solutions to Complex Hessian Equations on Hermitian Manifolds</title><source>Springer Nature</source><creator>Hai, Le Mau ; Van Quan, Vu</creator><creatorcontrib>Hai, Le Mau ; Van Quan, Vu</creatorcontrib><description>In this paper, we study and discuss existence and continuity of solution to complex Hessian equation
(
χ
+
d
d
c
·
)
k
∧
ω
n
-
k
=
c
f
ω
n
on Hermitian manifold
(
X
,
ω
)
, where
χ
is some smooth real
(
1
,
1
)
-
form in
X
and Hermitian form
ω
satisfies that at every given point on
X
, there exist a local chart
Ω
and a smooth real-valued function
G
such that
e
G
ω
is a Kähler form on
Ω
.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-023-01431-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Manifolds ; Mathematics ; Mathematics and Statistics</subject><ispartof>The Journal of geometric analysis, 2023-12, Vol.33 (12), Article 368</ispartof><rights>Mathematica Josephina, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-a604749a2f3c3389183704ed2e4d63d7dde5af523faf4cd6a8f4fcab15121f213</cites><orcidid>0000-0002-3493-5096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Hai, Le Mau</creatorcontrib><creatorcontrib>Van Quan, Vu</creatorcontrib><title>Continuous Solutions to Complex Hessian Equations on Hermitian Manifolds</title><title>The Journal of geometric analysis</title><addtitle>J Geom Anal</addtitle><description>In this paper, we study and discuss existence and continuity of solution to complex Hessian equation
(
χ
+
d
d
c
·
)
k
∧
ω
n
-
k
=
c
f
ω
n
on Hermitian manifold
(
X
,
ω
)
, where
χ
is some smooth real
(
1
,
1
)
-
form in
X
and Hermitian form
ω
satisfies that at every given point on
X
, there exist a local chart
Ω
and a smooth real-valued function
G
such that
e
G
ω
is a Kähler form on
Ω
.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz9HJ__YoZXWFFQ8qeAuxSaRLN9lNWtBvb2sFb55mmHnvDfND6JLANQFQN5lQSgEDZRgIZwTLI7QgQlQYgL4djz0IwLKi8hSd5bwF4JJxtUDrOoa-DUMccvEcu6FvY8hFH4s67vad-yzWLufWhGJ1GMy8jGEcpl3bT-NHE1ofO5vP0Yk3XXYXv3WJXu9WL_Uab57uH-rbDW4YVD02ErjilaGeNYyVFSmZAu4sddxKZpW1ThgvKPPG88ZKU3ruG_NOBKHEU8KW6GrO3ad4GFzu9TYOKYwnNS2nB5USk4rOqibFnJPzep_anUlfmoCeiOmZmB6J6R9iWo4mNpvyKA4fLv1F_-P6BofJbpM</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Hai, Le Mau</creator><creator>Van Quan, Vu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3493-5096</orcidid></search><sort><creationdate>20231201</creationdate><title>Continuous Solutions to Complex Hessian Equations on Hermitian Manifolds</title><author>Hai, Le Mau ; Van Quan, Vu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-a604749a2f3c3389183704ed2e4d63d7dde5af523faf4cd6a8f4fcab15121f213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hai, Le Mau</creatorcontrib><creatorcontrib>Van Quan, Vu</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of geometric analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hai, Le Mau</au><au>Van Quan, Vu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Solutions to Complex Hessian Equations on Hermitian Manifolds</atitle><jtitle>The Journal of geometric analysis</jtitle><stitle>J Geom Anal</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>33</volume><issue>12</issue><artnum>368</artnum><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>In this paper, we study and discuss existence and continuity of solution to complex Hessian equation
(
χ
+
d
d
c
·
)
k
∧
ω
n
-
k
=
c
f
ω
n
on Hermitian manifold
(
X
,
ω
)
, where
χ
is some smooth real
(
1
,
1
)
-
form in
X
and Hermitian form
ω
satisfies that at every given point on
X
, there exist a local chart
Ω
and a smooth real-valued function
G
such that
e
G
ω
is a Kähler form on
Ω
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-023-01431-6</doi><orcidid>https://orcid.org/0000-0002-3493-5096</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-6926 |
ispartof | The Journal of geometric analysis, 2023-12, Vol.33 (12), Article 368 |
issn | 1050-6926 1559-002X |
language | eng |
recordid | cdi_proquest_journals_2869267751 |
source | Springer Nature |
subjects | Abstract Harmonic Analysis Convex and Discrete Geometry Differential Geometry Dynamical Systems and Ergodic Theory Fourier Analysis Geometry Global Analysis and Analysis on Manifolds Manifolds Mathematics Mathematics and Statistics |
title | Continuous Solutions to Complex Hessian Equations on Hermitian Manifolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Solutions%20to%20Complex%20Hessian%20Equations%20on%20Hermitian%20Manifolds&rft.jtitle=The%20Journal%20of%20geometric%20analysis&rft.au=Hai,%20Le%20Mau&rft.date=2023-12-01&rft.volume=33&rft.issue=12&rft.artnum=368&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-023-01431-6&rft_dat=%3Cproquest_cross%3E2869267751%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-a604749a2f3c3389183704ed2e4d63d7dde5af523faf4cd6a8f4fcab15121f213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869267751&rft_id=info:pmid/&rfr_iscdi=true |