Loading…

Continuous Solutions to Complex Hessian Equations on Hermitian Manifolds

In this paper, we study and discuss existence and continuity of solution to complex Hessian equation ( χ + d d c · ) k ∧ ω n - k = c f ω n on Hermitian manifold ( X , ω ) , where χ is some smooth real ( 1 , 1 ) - form in X and Hermitian form ω satisfies that at every given point on X , there exist a...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of geometric analysis 2023-12, Vol.33 (12), Article 368
Main Authors: Hai, Le Mau, Van Quan, Vu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c309t-a604749a2f3c3389183704ed2e4d63d7dde5af523faf4cd6a8f4fcab15121f213
container_end_page
container_issue 12
container_start_page
container_title The Journal of geometric analysis
container_volume 33
creator Hai, Le Mau
Van Quan, Vu
description In this paper, we study and discuss existence and continuity of solution to complex Hessian equation ( χ + d d c · ) k ∧ ω n - k = c f ω n on Hermitian manifold ( X , ω ) , where χ is some smooth real ( 1 , 1 ) - form in X and Hermitian form ω satisfies that at every given point on X , there exist a local chart Ω and a smooth real-valued function G such that e G ω is a Kähler form on Ω .
doi_str_mv 10.1007/s12220-023-01431-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2869267751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869267751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-a604749a2f3c3389183704ed2e4d63d7dde5af523faf4cd6a8f4fcab15121f213</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz9HJ__YoZXWFFQ8qeAuxSaRLN9lNWtBvb2sFb55mmHnvDfND6JLANQFQN5lQSgEDZRgIZwTLI7QgQlQYgL4djz0IwLKi8hSd5bwF4JJxtUDrOoa-DUMccvEcu6FvY8hFH4s67vad-yzWLufWhGJ1GMy8jGEcpl3bT-NHE1ofO5vP0Yk3XXYXv3WJXu9WL_Uab57uH-rbDW4YVD02ErjilaGeNYyVFSmZAu4sddxKZpW1ThgvKPPG88ZKU3ruG_NOBKHEU8KW6GrO3ad4GFzu9TYOKYwnNS2nB5USk4rOqibFnJPzep_anUlfmoCeiOmZmB6J6R9iWo4mNpvyKA4fLv1F_-P6BofJbpM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869267751</pqid></control><display><type>article</type><title>Continuous Solutions to Complex Hessian Equations on Hermitian Manifolds</title><source>Springer Nature</source><creator>Hai, Le Mau ; Van Quan, Vu</creator><creatorcontrib>Hai, Le Mau ; Van Quan, Vu</creatorcontrib><description>In this paper, we study and discuss existence and continuity of solution to complex Hessian equation ( χ + d d c · ) k ∧ ω n - k = c f ω n on Hermitian manifold ( X , ω ) , where χ is some smooth real ( 1 , 1 ) - form in X and Hermitian form ω satisfies that at every given point on X , there exist a local chart Ω and a smooth real-valued function G such that e G ω is a Kähler form on Ω .</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-023-01431-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Manifolds ; Mathematics ; Mathematics and Statistics</subject><ispartof>The Journal of geometric analysis, 2023-12, Vol.33 (12), Article 368</ispartof><rights>Mathematica Josephina, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-a604749a2f3c3389183704ed2e4d63d7dde5af523faf4cd6a8f4fcab15121f213</cites><orcidid>0000-0002-3493-5096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Hai, Le Mau</creatorcontrib><creatorcontrib>Van Quan, Vu</creatorcontrib><title>Continuous Solutions to Complex Hessian Equations on Hermitian Manifolds</title><title>The Journal of geometric analysis</title><addtitle>J Geom Anal</addtitle><description>In this paper, we study and discuss existence and continuity of solution to complex Hessian equation ( χ + d d c · ) k ∧ ω n - k = c f ω n on Hermitian manifold ( X , ω ) , where χ is some smooth real ( 1 , 1 ) - form in X and Hermitian form ω satisfies that at every given point on X , there exist a local chart Ω and a smooth real-valued function G such that e G ω is a Kähler form on Ω .</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz9HJ__YoZXWFFQ8qeAuxSaRLN9lNWtBvb2sFb55mmHnvDfND6JLANQFQN5lQSgEDZRgIZwTLI7QgQlQYgL4djz0IwLKi8hSd5bwF4JJxtUDrOoa-DUMccvEcu6FvY8hFH4s67vad-yzWLufWhGJ1GMy8jGEcpl3bT-NHE1ofO5vP0Yk3XXYXv3WJXu9WL_Uab57uH-rbDW4YVD02ErjilaGeNYyVFSmZAu4sddxKZpW1ThgvKPPG88ZKU3ruG_NOBKHEU8KW6GrO3ad4GFzu9TYOKYwnNS2nB5USk4rOqibFnJPzep_anUlfmoCeiOmZmB6J6R9iWo4mNpvyKA4fLv1F_-P6BofJbpM</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Hai, Le Mau</creator><creator>Van Quan, Vu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3493-5096</orcidid></search><sort><creationdate>20231201</creationdate><title>Continuous Solutions to Complex Hessian Equations on Hermitian Manifolds</title><author>Hai, Le Mau ; Van Quan, Vu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-a604749a2f3c3389183704ed2e4d63d7dde5af523faf4cd6a8f4fcab15121f213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hai, Le Mau</creatorcontrib><creatorcontrib>Van Quan, Vu</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of geometric analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hai, Le Mau</au><au>Van Quan, Vu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Solutions to Complex Hessian Equations on Hermitian Manifolds</atitle><jtitle>The Journal of geometric analysis</jtitle><stitle>J Geom Anal</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>33</volume><issue>12</issue><artnum>368</artnum><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>In this paper, we study and discuss existence and continuity of solution to complex Hessian equation ( χ + d d c · ) k ∧ ω n - k = c f ω n on Hermitian manifold ( X , ω ) , where χ is some smooth real ( 1 , 1 ) - form in X and Hermitian form ω satisfies that at every given point on X , there exist a local chart Ω and a smooth real-valued function G such that e G ω is a Kähler form on Ω .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-023-01431-6</doi><orcidid>https://orcid.org/0000-0002-3493-5096</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of geometric analysis, 2023-12, Vol.33 (12), Article 368
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2869267751
source Springer Nature
subjects Abstract Harmonic Analysis
Convex and Discrete Geometry
Differential Geometry
Dynamical Systems and Ergodic Theory
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Manifolds
Mathematics
Mathematics and Statistics
title Continuous Solutions to Complex Hessian Equations on Hermitian Manifolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Solutions%20to%20Complex%20Hessian%20Equations%20on%20Hermitian%20Manifolds&rft.jtitle=The%20Journal%20of%20geometric%20analysis&rft.au=Hai,%20Le%20Mau&rft.date=2023-12-01&rft.volume=33&rft.issue=12&rft.artnum=368&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-023-01431-6&rft_dat=%3Cproquest_cross%3E2869267751%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-a604749a2f3c3389183704ed2e4d63d7dde5af523faf4cd6a8f4fcab15121f213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869267751&rft_id=info:pmid/&rfr_iscdi=true