Loading…

Comparative Chloroplast Genomics Reveals a Unique Gene Inversion in Two Cordia Trees (Cordiaceae)

Cordiaceae is a family comprising more than 400 species in the order Boraginales. The classification of this family has undergone changes over time, transitioning between family and subfamily status. In the present study, the complete chloroplast (cp) genomes of Cordia monoica and Cordia sinensis we...

Full description

Saved in:
Bibliographic Details
Published in:Forests 2023-09, Vol.14 (9), p.1778
Main Authors: Alawfi, Mohammad S., Albokhari, Enas J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cordiaceae is a family comprising more than 400 species in the order Boraginales. The classification of this family has undergone changes over time, transitioning between family and subfamily status. In the present study, the complete chloroplast (cp) genomes of Cordia monoica and Cordia sinensis were sequenced, and their cp genomes were then characterized, analyzed, and compared to those of closely related taxa. The lengths of the cp genomes of C. monoica and C. sinensis were 151,813 bp and 152,050 bp, respectively. Both genomes consisted of 114 genes, divided into 4 ribosomal RNA genes, 30 transfer RNA genes, and 80 protein-coding genes. We observed a unique gene inversion in the trnM-rbcL region of both Cordia species. The long repeats analysis revealed that both species’ chloroplast genomes contained forward and palindromic repeats. The simple sequence repeats (SSRs) analysis detected 155 microsatellites in each genome, with the majority being mononucleotide repeats (A/T). Phylogenetic analysis based on maximum likelihood and Bayesian analyses confirmed two major clades in the order Boraginales: clade I comprised Boraginaceae, while clade II included Cordiaceae, Ehretiaceae, and Heliotropiaceae. This study expands our knowledge of the evolutionary relationships across the order Boraginales and offers useful genetic resources.
ISSN:1999-4907
1999-4907
DOI:10.3390/f14091778