Loading…

A Fast Interface Circuit for the Measurement of 10 Ω to 1 GΩ Resistance

In this work, an interface circuit applied to resistive gas or chemical sensors is proposed. The interface circuit includes a detection front-end, a single-end to differential circuit, a successive approximation analog-to-digital converter (SAR ADC), and some reference auxiliary circuits. In detecti...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2023-09, Vol.12 (18), p.3796
Main Authors: Ning, Yongkai, Guo, Jiangfei, Jia, Yangchen, Li, Duosheng, Guo, Guiliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, an interface circuit applied to resistive gas or chemical sensors is proposed. The interface circuit includes a detection front-end, a single-end to differential circuit, a successive approximation analog-to-digital converter (SAR ADC), and some reference auxiliary circuits. In detection front-end circuits, mirrored currents in a current mirror usually differ by several orders of magnitude. In order to ensure that the current mirror can be copied accurately, this work uses a negative feedback structure consisting of an operational amplifier and an NMOS tube to ensure that the VDS of the current mirroring tube remains consistent. Simulation results show that the replication error of the current mirror is 0.015%. The proposed interface circuit has a detection range of 10 Ω to 1 GΩ with a relative error of 0.55%. The current multiplication or divided technique allows the interface circuit to have a high sampling frequency of up to 10 kHz. The proposed circuit is based on a 180 nm CMOS process with a chip area of 0.308 mm2 (723 μm ∗ 426 μm). The power consumption of the whole interface circuit is 3.66 mW when the power supply voltage is 1.8 V.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics12183796