Loading…

ENIGMA-51: Towards a Fine-Grained Understanding of Human-Object Interactions in Industrial Scenarios

ENIGMA-51 is a new egocentric dataset acquired in an industrial scenario by 19 subjects who followed instructions to complete the repair of electrical boards using industrial tools (e.g., electric screwdriver) and equipments (e.g., oscilloscope). The 51 egocentric video sequences are densely annotat...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-11
Main Authors: Ragusa, Francesco, Leonardi, Rosario, Mazzamuto, Michele, Bonanno, Claudia, Scavo, Rosario, Furnari, Antonino, Farinella, Giovanni Maria
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ragusa, Francesco
Leonardi, Rosario
Mazzamuto, Michele
Bonanno, Claudia
Scavo, Rosario
Furnari, Antonino
Farinella, Giovanni Maria
description ENIGMA-51 is a new egocentric dataset acquired in an industrial scenario by 19 subjects who followed instructions to complete the repair of electrical boards using industrial tools (e.g., electric screwdriver) and equipments (e.g., oscilloscope). The 51 egocentric video sequences are densely annotated with a rich set of labels that enable the systematic study of human behavior in the industrial domain. We provide benchmarks on four tasks related to human behavior: 1) untrimmed temporal detection of human-object interactions, 2) egocentric human-object interaction detection, 3) short-term object interaction anticipation and 4) natural language understanding of intents and entities. Baseline results show that the ENIGMA-51 dataset poses a challenging benchmark to study human behavior in industrial scenarios. We publicly release the dataset at https://iplab.dmi.unict.it/ENIGMA-51.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2869396429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869396429</sourcerecordid><originalsourceid>FETCH-proquest_journals_28693964293</originalsourceid><addsrcrecordid>eNqNissKwjAQAIMgKOo_LHgO1MTW1puIr4N6UM-yNqmk6EazKf6-PfgBnoZhpiP6SuuJzKdK9cSIuU6SRGUzlaa6L8zqsNvsFzKdzOHsPxgMA8LakZWbgC0MXMjYwBHJOLqDr2DbPJHk8VbbMsKOog1YRueJwVHrpuEYHD7gVFrC4DwPRbfCB9vRjwMxXq_Oy618Bf9uLMdr7ZtAbbqqPCt0kU1Vof-7vvgVRQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869396429</pqid></control><display><type>article</type><title>ENIGMA-51: Towards a Fine-Grained Understanding of Human-Object Interactions in Industrial Scenarios</title><source>Publicly Available Content (ProQuest)</source><creator>Ragusa, Francesco ; Leonardi, Rosario ; Mazzamuto, Michele ; Bonanno, Claudia ; Scavo, Rosario ; Furnari, Antonino ; Farinella, Giovanni Maria</creator><creatorcontrib>Ragusa, Francesco ; Leonardi, Rosario ; Mazzamuto, Michele ; Bonanno, Claudia ; Scavo, Rosario ; Furnari, Antonino ; Farinella, Giovanni Maria</creatorcontrib><description>ENIGMA-51 is a new egocentric dataset acquired in an industrial scenario by 19 subjects who followed instructions to complete the repair of electrical boards using industrial tools (e.g., electric screwdriver) and equipments (e.g., oscilloscope). The 51 egocentric video sequences are densely annotated with a rich set of labels that enable the systematic study of human behavior in the industrial domain. We provide benchmarks on four tasks related to human behavior: 1) untrimmed temporal detection of human-object interactions, 2) egocentric human-object interaction detection, 3) short-term object interaction anticipation and 4) natural language understanding of intents and entities. Baseline results show that the ENIGMA-51 dataset poses a challenging benchmark to study human behavior in industrial scenarios. We publicly release the dataset at https://iplab.dmi.unict.it/ENIGMA-51.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Benchmarks ; Datasets ; Screwdrivers</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2869396429?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Ragusa, Francesco</creatorcontrib><creatorcontrib>Leonardi, Rosario</creatorcontrib><creatorcontrib>Mazzamuto, Michele</creatorcontrib><creatorcontrib>Bonanno, Claudia</creatorcontrib><creatorcontrib>Scavo, Rosario</creatorcontrib><creatorcontrib>Furnari, Antonino</creatorcontrib><creatorcontrib>Farinella, Giovanni Maria</creatorcontrib><title>ENIGMA-51: Towards a Fine-Grained Understanding of Human-Object Interactions in Industrial Scenarios</title><title>arXiv.org</title><description>ENIGMA-51 is a new egocentric dataset acquired in an industrial scenario by 19 subjects who followed instructions to complete the repair of electrical boards using industrial tools (e.g., electric screwdriver) and equipments (e.g., oscilloscope). The 51 egocentric video sequences are densely annotated with a rich set of labels that enable the systematic study of human behavior in the industrial domain. We provide benchmarks on four tasks related to human behavior: 1) untrimmed temporal detection of human-object interactions, 2) egocentric human-object interaction detection, 3) short-term object interaction anticipation and 4) natural language understanding of intents and entities. Baseline results show that the ENIGMA-51 dataset poses a challenging benchmark to study human behavior in industrial scenarios. We publicly release the dataset at https://iplab.dmi.unict.it/ENIGMA-51.</description><subject>Benchmarks</subject><subject>Datasets</subject><subject>Screwdrivers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNissKwjAQAIMgKOo_LHgO1MTW1puIr4N6UM-yNqmk6EazKf6-PfgBnoZhpiP6SuuJzKdK9cSIuU6SRGUzlaa6L8zqsNvsFzKdzOHsPxgMA8LakZWbgC0MXMjYwBHJOLqDr2DbPJHk8VbbMsKOog1YRueJwVHrpuEYHD7gVFrC4DwPRbfCB9vRjwMxXq_Oy618Bf9uLMdr7ZtAbbqqPCt0kU1Vof-7vvgVRQE</recordid><startdate>20231127</startdate><enddate>20231127</enddate><creator>Ragusa, Francesco</creator><creator>Leonardi, Rosario</creator><creator>Mazzamuto, Michele</creator><creator>Bonanno, Claudia</creator><creator>Scavo, Rosario</creator><creator>Furnari, Antonino</creator><creator>Farinella, Giovanni Maria</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231127</creationdate><title>ENIGMA-51: Towards a Fine-Grained Understanding of Human-Object Interactions in Industrial Scenarios</title><author>Ragusa, Francesco ; Leonardi, Rosario ; Mazzamuto, Michele ; Bonanno, Claudia ; Scavo, Rosario ; Furnari, Antonino ; Farinella, Giovanni Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28693964293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Benchmarks</topic><topic>Datasets</topic><topic>Screwdrivers</topic><toplevel>online_resources</toplevel><creatorcontrib>Ragusa, Francesco</creatorcontrib><creatorcontrib>Leonardi, Rosario</creatorcontrib><creatorcontrib>Mazzamuto, Michele</creatorcontrib><creatorcontrib>Bonanno, Claudia</creatorcontrib><creatorcontrib>Scavo, Rosario</creatorcontrib><creatorcontrib>Furnari, Antonino</creatorcontrib><creatorcontrib>Farinella, Giovanni Maria</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ragusa, Francesco</au><au>Leonardi, Rosario</au><au>Mazzamuto, Michele</au><au>Bonanno, Claudia</au><au>Scavo, Rosario</au><au>Furnari, Antonino</au><au>Farinella, Giovanni Maria</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>ENIGMA-51: Towards a Fine-Grained Understanding of Human-Object Interactions in Industrial Scenarios</atitle><jtitle>arXiv.org</jtitle><date>2023-11-27</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>ENIGMA-51 is a new egocentric dataset acquired in an industrial scenario by 19 subjects who followed instructions to complete the repair of electrical boards using industrial tools (e.g., electric screwdriver) and equipments (e.g., oscilloscope). The 51 egocentric video sequences are densely annotated with a rich set of labels that enable the systematic study of human behavior in the industrial domain. We provide benchmarks on four tasks related to human behavior: 1) untrimmed temporal detection of human-object interactions, 2) egocentric human-object interaction detection, 3) short-term object interaction anticipation and 4) natural language understanding of intents and entities. Baseline results show that the ENIGMA-51 dataset poses a challenging benchmark to study human behavior in industrial scenarios. We publicly release the dataset at https://iplab.dmi.unict.it/ENIGMA-51.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2869396429
source Publicly Available Content (ProQuest)
subjects Benchmarks
Datasets
Screwdrivers
title ENIGMA-51: Towards a Fine-Grained Understanding of Human-Object Interactions in Industrial Scenarios
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=ENIGMA-51:%20Towards%20a%20Fine-Grained%20Understanding%20of%20Human-Object%20Interactions%20in%20Industrial%20Scenarios&rft.jtitle=arXiv.org&rft.au=Ragusa,%20Francesco&rft.date=2023-11-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2869396429%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28693964293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869396429&rft_id=info:pmid/&rfr_iscdi=true