Loading…
ENIGMA-51: Towards a Fine-Grained Understanding of Human-Object Interactions in Industrial Scenarios
ENIGMA-51 is a new egocentric dataset acquired in an industrial scenario by 19 subjects who followed instructions to complete the repair of electrical boards using industrial tools (e.g., electric screwdriver) and equipments (e.g., oscilloscope). The 51 egocentric video sequences are densely annotat...
Saved in:
Published in: | arXiv.org 2023-11 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ragusa, Francesco Leonardi, Rosario Mazzamuto, Michele Bonanno, Claudia Scavo, Rosario Furnari, Antonino Farinella, Giovanni Maria |
description | ENIGMA-51 is a new egocentric dataset acquired in an industrial scenario by 19 subjects who followed instructions to complete the repair of electrical boards using industrial tools (e.g., electric screwdriver) and equipments (e.g., oscilloscope). The 51 egocentric video sequences are densely annotated with a rich set of labels that enable the systematic study of human behavior in the industrial domain. We provide benchmarks on four tasks related to human behavior: 1) untrimmed temporal detection of human-object interactions, 2) egocentric human-object interaction detection, 3) short-term object interaction anticipation and 4) natural language understanding of intents and entities. Baseline results show that the ENIGMA-51 dataset poses a challenging benchmark to study human behavior in industrial scenarios. We publicly release the dataset at https://iplab.dmi.unict.it/ENIGMA-51. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2869396429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869396429</sourcerecordid><originalsourceid>FETCH-proquest_journals_28693964293</originalsourceid><addsrcrecordid>eNqNissKwjAQAIMgKOo_LHgO1MTW1puIr4N6UM-yNqmk6EazKf6-PfgBnoZhpiP6SuuJzKdK9cSIuU6SRGUzlaa6L8zqsNvsFzKdzOHsPxgMA8LakZWbgC0MXMjYwBHJOLqDr2DbPJHk8VbbMsKOog1YRueJwVHrpuEYHD7gVFrC4DwPRbfCB9vRjwMxXq_Oy618Bf9uLMdr7ZtAbbqqPCt0kU1Vof-7vvgVRQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869396429</pqid></control><display><type>article</type><title>ENIGMA-51: Towards a Fine-Grained Understanding of Human-Object Interactions in Industrial Scenarios</title><source>Publicly Available Content (ProQuest)</source><creator>Ragusa, Francesco ; Leonardi, Rosario ; Mazzamuto, Michele ; Bonanno, Claudia ; Scavo, Rosario ; Furnari, Antonino ; Farinella, Giovanni Maria</creator><creatorcontrib>Ragusa, Francesco ; Leonardi, Rosario ; Mazzamuto, Michele ; Bonanno, Claudia ; Scavo, Rosario ; Furnari, Antonino ; Farinella, Giovanni Maria</creatorcontrib><description>ENIGMA-51 is a new egocentric dataset acquired in an industrial scenario by 19 subjects who followed instructions to complete the repair of electrical boards using industrial tools (e.g., electric screwdriver) and equipments (e.g., oscilloscope). The 51 egocentric video sequences are densely annotated with a rich set of labels that enable the systematic study of human behavior in the industrial domain. We provide benchmarks on four tasks related to human behavior: 1) untrimmed temporal detection of human-object interactions, 2) egocentric human-object interaction detection, 3) short-term object interaction anticipation and 4) natural language understanding of intents and entities. Baseline results show that the ENIGMA-51 dataset poses a challenging benchmark to study human behavior in industrial scenarios. We publicly release the dataset at https://iplab.dmi.unict.it/ENIGMA-51.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Benchmarks ; Datasets ; Screwdrivers</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2869396429?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Ragusa, Francesco</creatorcontrib><creatorcontrib>Leonardi, Rosario</creatorcontrib><creatorcontrib>Mazzamuto, Michele</creatorcontrib><creatorcontrib>Bonanno, Claudia</creatorcontrib><creatorcontrib>Scavo, Rosario</creatorcontrib><creatorcontrib>Furnari, Antonino</creatorcontrib><creatorcontrib>Farinella, Giovanni Maria</creatorcontrib><title>ENIGMA-51: Towards a Fine-Grained Understanding of Human-Object Interactions in Industrial Scenarios</title><title>arXiv.org</title><description>ENIGMA-51 is a new egocentric dataset acquired in an industrial scenario by 19 subjects who followed instructions to complete the repair of electrical boards using industrial tools (e.g., electric screwdriver) and equipments (e.g., oscilloscope). The 51 egocentric video sequences are densely annotated with a rich set of labels that enable the systematic study of human behavior in the industrial domain. We provide benchmarks on four tasks related to human behavior: 1) untrimmed temporal detection of human-object interactions, 2) egocentric human-object interaction detection, 3) short-term object interaction anticipation and 4) natural language understanding of intents and entities. Baseline results show that the ENIGMA-51 dataset poses a challenging benchmark to study human behavior in industrial scenarios. We publicly release the dataset at https://iplab.dmi.unict.it/ENIGMA-51.</description><subject>Benchmarks</subject><subject>Datasets</subject><subject>Screwdrivers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNissKwjAQAIMgKOo_LHgO1MTW1puIr4N6UM-yNqmk6EazKf6-PfgBnoZhpiP6SuuJzKdK9cSIuU6SRGUzlaa6L8zqsNvsFzKdzOHsPxgMA8LakZWbgC0MXMjYwBHJOLqDr2DbPJHk8VbbMsKOog1YRueJwVHrpuEYHD7gVFrC4DwPRbfCB9vRjwMxXq_Oy618Bf9uLMdr7ZtAbbqqPCt0kU1Vof-7vvgVRQE</recordid><startdate>20231127</startdate><enddate>20231127</enddate><creator>Ragusa, Francesco</creator><creator>Leonardi, Rosario</creator><creator>Mazzamuto, Michele</creator><creator>Bonanno, Claudia</creator><creator>Scavo, Rosario</creator><creator>Furnari, Antonino</creator><creator>Farinella, Giovanni Maria</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231127</creationdate><title>ENIGMA-51: Towards a Fine-Grained Understanding of Human-Object Interactions in Industrial Scenarios</title><author>Ragusa, Francesco ; Leonardi, Rosario ; Mazzamuto, Michele ; Bonanno, Claudia ; Scavo, Rosario ; Furnari, Antonino ; Farinella, Giovanni Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28693964293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Benchmarks</topic><topic>Datasets</topic><topic>Screwdrivers</topic><toplevel>online_resources</toplevel><creatorcontrib>Ragusa, Francesco</creatorcontrib><creatorcontrib>Leonardi, Rosario</creatorcontrib><creatorcontrib>Mazzamuto, Michele</creatorcontrib><creatorcontrib>Bonanno, Claudia</creatorcontrib><creatorcontrib>Scavo, Rosario</creatorcontrib><creatorcontrib>Furnari, Antonino</creatorcontrib><creatorcontrib>Farinella, Giovanni Maria</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ragusa, Francesco</au><au>Leonardi, Rosario</au><au>Mazzamuto, Michele</au><au>Bonanno, Claudia</au><au>Scavo, Rosario</au><au>Furnari, Antonino</au><au>Farinella, Giovanni Maria</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>ENIGMA-51: Towards a Fine-Grained Understanding of Human-Object Interactions in Industrial Scenarios</atitle><jtitle>arXiv.org</jtitle><date>2023-11-27</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>ENIGMA-51 is a new egocentric dataset acquired in an industrial scenario by 19 subjects who followed instructions to complete the repair of electrical boards using industrial tools (e.g., electric screwdriver) and equipments (e.g., oscilloscope). The 51 egocentric video sequences are densely annotated with a rich set of labels that enable the systematic study of human behavior in the industrial domain. We provide benchmarks on four tasks related to human behavior: 1) untrimmed temporal detection of human-object interactions, 2) egocentric human-object interaction detection, 3) short-term object interaction anticipation and 4) natural language understanding of intents and entities. Baseline results show that the ENIGMA-51 dataset poses a challenging benchmark to study human behavior in industrial scenarios. We publicly release the dataset at https://iplab.dmi.unict.it/ENIGMA-51.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2869396429 |
source | Publicly Available Content (ProQuest) |
subjects | Benchmarks Datasets Screwdrivers |
title | ENIGMA-51: Towards a Fine-Grained Understanding of Human-Object Interactions in Industrial Scenarios |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=ENIGMA-51:%20Towards%20a%20Fine-Grained%20Understanding%20of%20Human-Object%20Interactions%20in%20Industrial%20Scenarios&rft.jtitle=arXiv.org&rft.au=Ragusa,%20Francesco&rft.date=2023-11-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2869396429%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28693964293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869396429&rft_id=info:pmid/&rfr_iscdi=true |