Loading…
Impact of chest radiograph image size and augmentation on estimating pulmonary artery wedge pressure by regression convolutional neural network
Heart failure is related to pulmonary artery wedge pressure (PAWP), which is one of the measurements for diagnosing heart disease. In the case of suspected heart failure, it is desirable to measure PAWP by right heart catheterization (RHC). However, RHC is an invasive procedure accompanied with the...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2872 |
creator | Omae, Yuto Saito, Yuki Fukamachi, Daisuke Nagashima, Koichi Okumura, Yasuo Toyotani, Jun |
description | Heart failure is related to pulmonary artery wedge pressure (PAWP), which is one of the measurements for diagnosing heart disease. In the case of suspected heart failure, it is desirable to measure PAWP by right heart catheterization (RHC). However, RHC is an invasive procedure accompanied with the risk of complication. Therefore, a method to quantitatively estimate PAWP from chest radiographs by a regression convolutional neural network (R-CNN) was proposed as the previous study. The risk of complication is eliminated because the method is non-invasive. Moreover, developed R-CNN includes regression activation map (RAM), which is one of the white-box techniques for CNN. However, tuning hyper parameters of R-CNN (e.g., input image size and data augmentation) developed in previous researches, is insufficient. Therefore, we carry out sensitivity analyses of input image sizes and data augmentation against estimating PAWP from chest radiographs. Through these analyses, we found the appropriate input image size and data augmentation. |
doi_str_mv | 10.1063/5.0162766 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2869757587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869757587</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-360988151ff932655b8058d62dc23041ab91b22fef11592ca1a1b54d1cee625b3</originalsourceid><addsrcrecordid>eNotkF9LwzAUxYMoOKcPfoOAb0JnbtKk7aMMnYOBLwq-lbRNu862qfnjmF_Cr2zqBhcOF37ncs9B6BbIAohgD3xBQNBEiDM0A84hSgSIczQjJIsjGrOPS3Rl7Y4QmiVJOkO_636UpcO6xuVWWYeNrFrdGDlucdvLRmHb_igshwpL3_RqcNK1esBhAh0I1w4NHn3X60GaA5bGqSB7VQXraJS13ihcHLBRzbRN3lIP37rz0x3Z4UF58y9ur83nNbqoZWfVzUnn6P356W35Em1eV-vl4yYagTEXMUGyNAUOdZ0xKjgvUsLTStCqpIzEIIsMCkprVQPwjJYSJBQ8rqBUSlBesDm6O94djf7yIUq-096Ef2xOU5ElPOFpEqj7I2XL9hg8H00IbQ45kHwqPOf5qXD2B6TQde0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2869757587</pqid></control><display><type>conference_proceeding</type><title>Impact of chest radiograph image size and augmentation on estimating pulmonary artery wedge pressure by regression convolutional neural network</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Omae, Yuto ; Saito, Yuki ; Fukamachi, Daisuke ; Nagashima, Koichi ; Okumura, Yasuo ; Toyotani, Jun</creator><contributor>Vlachos, Dimitrios</contributor><creatorcontrib>Omae, Yuto ; Saito, Yuki ; Fukamachi, Daisuke ; Nagashima, Koichi ; Okumura, Yasuo ; Toyotani, Jun ; Vlachos, Dimitrios</creatorcontrib><description>Heart failure is related to pulmonary artery wedge pressure (PAWP), which is one of the measurements for diagnosing heart disease. In the case of suspected heart failure, it is desirable to measure PAWP by right heart catheterization (RHC). However, RHC is an invasive procedure accompanied with the risk of complication. Therefore, a method to quantitatively estimate PAWP from chest radiographs by a regression convolutional neural network (R-CNN) was proposed as the previous study. The risk of complication is eliminated because the method is non-invasive. Moreover, developed R-CNN includes regression activation map (RAM), which is one of the white-box techniques for CNN. However, tuning hyper parameters of R-CNN (e.g., input image size and data augmentation) developed in previous researches, is insufficient. Therefore, we carry out sensitivity analyses of input image sizes and data augmentation against estimating PAWP from chest radiographs. Through these analyses, we found the appropriate input image size and data augmentation.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0162766</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Chest ; Data augmentation ; Heart diseases ; Heart failure ; Neural networks ; Pulmonary arteries ; Radiographs ; Regression</subject><ispartof>AIP conference proceedings, 2023, Vol.2872 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Vlachos, Dimitrios</contributor><creatorcontrib>Omae, Yuto</creatorcontrib><creatorcontrib>Saito, Yuki</creatorcontrib><creatorcontrib>Fukamachi, Daisuke</creatorcontrib><creatorcontrib>Nagashima, Koichi</creatorcontrib><creatorcontrib>Okumura, Yasuo</creatorcontrib><creatorcontrib>Toyotani, Jun</creatorcontrib><title>Impact of chest radiograph image size and augmentation on estimating pulmonary artery wedge pressure by regression convolutional neural network</title><title>AIP conference proceedings</title><description>Heart failure is related to pulmonary artery wedge pressure (PAWP), which is one of the measurements for diagnosing heart disease. In the case of suspected heart failure, it is desirable to measure PAWP by right heart catheterization (RHC). However, RHC is an invasive procedure accompanied with the risk of complication. Therefore, a method to quantitatively estimate PAWP from chest radiographs by a regression convolutional neural network (R-CNN) was proposed as the previous study. The risk of complication is eliminated because the method is non-invasive. Moreover, developed R-CNN includes regression activation map (RAM), which is one of the white-box techniques for CNN. However, tuning hyper parameters of R-CNN (e.g., input image size and data augmentation) developed in previous researches, is insufficient. Therefore, we carry out sensitivity analyses of input image sizes and data augmentation against estimating PAWP from chest radiographs. Through these analyses, we found the appropriate input image size and data augmentation.</description><subject>Artificial neural networks</subject><subject>Chest</subject><subject>Data augmentation</subject><subject>Heart diseases</subject><subject>Heart failure</subject><subject>Neural networks</subject><subject>Pulmonary arteries</subject><subject>Radiographs</subject><subject>Regression</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkF9LwzAUxYMoOKcPfoOAb0JnbtKk7aMMnYOBLwq-lbRNu862qfnjmF_Cr2zqBhcOF37ncs9B6BbIAohgD3xBQNBEiDM0A84hSgSIczQjJIsjGrOPS3Rl7Y4QmiVJOkO_636UpcO6xuVWWYeNrFrdGDlucdvLRmHb_igshwpL3_RqcNK1esBhAh0I1w4NHn3X60GaA5bGqSB7VQXraJS13ihcHLBRzbRN3lIP37rz0x3Z4UF58y9ur83nNbqoZWfVzUnn6P356W35Em1eV-vl4yYagTEXMUGyNAUOdZ0xKjgvUsLTStCqpIzEIIsMCkprVQPwjJYSJBQ8rqBUSlBesDm6O94djf7yIUq-096Ef2xOU5ElPOFpEqj7I2XL9hg8H00IbQ45kHwqPOf5qXD2B6TQde0</recordid><startdate>20230928</startdate><enddate>20230928</enddate><creator>Omae, Yuto</creator><creator>Saito, Yuki</creator><creator>Fukamachi, Daisuke</creator><creator>Nagashima, Koichi</creator><creator>Okumura, Yasuo</creator><creator>Toyotani, Jun</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230928</creationdate><title>Impact of chest radiograph image size and augmentation on estimating pulmonary artery wedge pressure by regression convolutional neural network</title><author>Omae, Yuto ; Saito, Yuki ; Fukamachi, Daisuke ; Nagashima, Koichi ; Okumura, Yasuo ; Toyotani, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-360988151ff932655b8058d62dc23041ab91b22fef11592ca1a1b54d1cee625b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Chest</topic><topic>Data augmentation</topic><topic>Heart diseases</topic><topic>Heart failure</topic><topic>Neural networks</topic><topic>Pulmonary arteries</topic><topic>Radiographs</topic><topic>Regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omae, Yuto</creatorcontrib><creatorcontrib>Saito, Yuki</creatorcontrib><creatorcontrib>Fukamachi, Daisuke</creatorcontrib><creatorcontrib>Nagashima, Koichi</creatorcontrib><creatorcontrib>Okumura, Yasuo</creatorcontrib><creatorcontrib>Toyotani, Jun</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omae, Yuto</au><au>Saito, Yuki</au><au>Fukamachi, Daisuke</au><au>Nagashima, Koichi</au><au>Okumura, Yasuo</au><au>Toyotani, Jun</au><au>Vlachos, Dimitrios</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Impact of chest radiograph image size and augmentation on estimating pulmonary artery wedge pressure by regression convolutional neural network</atitle><btitle>AIP conference proceedings</btitle><date>2023-09-28</date><risdate>2023</risdate><volume>2872</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Heart failure is related to pulmonary artery wedge pressure (PAWP), which is one of the measurements for diagnosing heart disease. In the case of suspected heart failure, it is desirable to measure PAWP by right heart catheterization (RHC). However, RHC is an invasive procedure accompanied with the risk of complication. Therefore, a method to quantitatively estimate PAWP from chest radiographs by a regression convolutional neural network (R-CNN) was proposed as the previous study. The risk of complication is eliminated because the method is non-invasive. Moreover, developed R-CNN includes regression activation map (RAM), which is one of the white-box techniques for CNN. However, tuning hyper parameters of R-CNN (e.g., input image size and data augmentation) developed in previous researches, is insufficient. Therefore, we carry out sensitivity analyses of input image sizes and data augmentation against estimating PAWP from chest radiographs. Through these analyses, we found the appropriate input image size and data augmentation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0162766</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2872 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2869757587 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Artificial neural networks Chest Data augmentation Heart diseases Heart failure Neural networks Pulmonary arteries Radiographs Regression |
title | Impact of chest radiograph image size and augmentation on estimating pulmonary artery wedge pressure by regression convolutional neural network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A18%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Impact%20of%20chest%20radiograph%20image%20size%20and%20augmentation%20on%20estimating%20pulmonary%20artery%20wedge%20pressure%20by%20regression%20convolutional%20neural%20network&rft.btitle=AIP%20conference%20proceedings&rft.au=Omae,%20Yuto&rft.date=2023-09-28&rft.volume=2872&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0162766&rft_dat=%3Cproquest_scita%3E2869757587%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p133t-360988151ff932655b8058d62dc23041ab91b22fef11592ca1a1b54d1cee625b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869757587&rft_id=info:pmid/&rfr_iscdi=true |