Loading…

Impact of chest radiograph image size and augmentation on estimating pulmonary artery wedge pressure by regression convolutional neural network

Heart failure is related to pulmonary artery wedge pressure (PAWP), which is one of the measurements for diagnosing heart disease. In the case of suspected heart failure, it is desirable to measure PAWP by right heart catheterization (RHC). However, RHC is an invasive procedure accompanied with the...

Full description

Saved in:
Bibliographic Details
Main Authors: Omae, Yuto, Saito, Yuki, Fukamachi, Daisuke, Nagashima, Koichi, Okumura, Yasuo, Toyotani, Jun
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2872
creator Omae, Yuto
Saito, Yuki
Fukamachi, Daisuke
Nagashima, Koichi
Okumura, Yasuo
Toyotani, Jun
description Heart failure is related to pulmonary artery wedge pressure (PAWP), which is one of the measurements for diagnosing heart disease. In the case of suspected heart failure, it is desirable to measure PAWP by right heart catheterization (RHC). However, RHC is an invasive procedure accompanied with the risk of complication. Therefore, a method to quantitatively estimate PAWP from chest radiographs by a regression convolutional neural network (R-CNN) was proposed as the previous study. The risk of complication is eliminated because the method is non-invasive. Moreover, developed R-CNN includes regression activation map (RAM), which is one of the white-box techniques for CNN. However, tuning hyper parameters of R-CNN (e.g., input image size and data augmentation) developed in previous researches, is insufficient. Therefore, we carry out sensitivity analyses of input image sizes and data augmentation against estimating PAWP from chest radiographs. Through these analyses, we found the appropriate input image size and data augmentation.
doi_str_mv 10.1063/5.0162766
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2869757587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869757587</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-360988151ff932655b8058d62dc23041ab91b22fef11592ca1a1b54d1cee625b3</originalsourceid><addsrcrecordid>eNotkF9LwzAUxYMoOKcPfoOAb0JnbtKk7aMMnYOBLwq-lbRNu862qfnjmF_Cr2zqBhcOF37ncs9B6BbIAohgD3xBQNBEiDM0A84hSgSIczQjJIsjGrOPS3Rl7Y4QmiVJOkO_636UpcO6xuVWWYeNrFrdGDlucdvLRmHb_igshwpL3_RqcNK1esBhAh0I1w4NHn3X60GaA5bGqSB7VQXraJS13ihcHLBRzbRN3lIP37rz0x3Z4UF58y9ur83nNbqoZWfVzUnn6P356W35Em1eV-vl4yYagTEXMUGyNAUOdZ0xKjgvUsLTStCqpIzEIIsMCkprVQPwjJYSJBQ8rqBUSlBesDm6O94djf7yIUq-096Ef2xOU5ElPOFpEqj7I2XL9hg8H00IbQ45kHwqPOf5qXD2B6TQde0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2869757587</pqid></control><display><type>conference_proceeding</type><title>Impact of chest radiograph image size and augmentation on estimating pulmonary artery wedge pressure by regression convolutional neural network</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Omae, Yuto ; Saito, Yuki ; Fukamachi, Daisuke ; Nagashima, Koichi ; Okumura, Yasuo ; Toyotani, Jun</creator><contributor>Vlachos, Dimitrios</contributor><creatorcontrib>Omae, Yuto ; Saito, Yuki ; Fukamachi, Daisuke ; Nagashima, Koichi ; Okumura, Yasuo ; Toyotani, Jun ; Vlachos, Dimitrios</creatorcontrib><description>Heart failure is related to pulmonary artery wedge pressure (PAWP), which is one of the measurements for diagnosing heart disease. In the case of suspected heart failure, it is desirable to measure PAWP by right heart catheterization (RHC). However, RHC is an invasive procedure accompanied with the risk of complication. Therefore, a method to quantitatively estimate PAWP from chest radiographs by a regression convolutional neural network (R-CNN) was proposed as the previous study. The risk of complication is eliminated because the method is non-invasive. Moreover, developed R-CNN includes regression activation map (RAM), which is one of the white-box techniques for CNN. However, tuning hyper parameters of R-CNN (e.g., input image size and data augmentation) developed in previous researches, is insufficient. Therefore, we carry out sensitivity analyses of input image sizes and data augmentation against estimating PAWP from chest radiographs. Through these analyses, we found the appropriate input image size and data augmentation.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0162766</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Chest ; Data augmentation ; Heart diseases ; Heart failure ; Neural networks ; Pulmonary arteries ; Radiographs ; Regression</subject><ispartof>AIP conference proceedings, 2023, Vol.2872 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Vlachos, Dimitrios</contributor><creatorcontrib>Omae, Yuto</creatorcontrib><creatorcontrib>Saito, Yuki</creatorcontrib><creatorcontrib>Fukamachi, Daisuke</creatorcontrib><creatorcontrib>Nagashima, Koichi</creatorcontrib><creatorcontrib>Okumura, Yasuo</creatorcontrib><creatorcontrib>Toyotani, Jun</creatorcontrib><title>Impact of chest radiograph image size and augmentation on estimating pulmonary artery wedge pressure by regression convolutional neural network</title><title>AIP conference proceedings</title><description>Heart failure is related to pulmonary artery wedge pressure (PAWP), which is one of the measurements for diagnosing heart disease. In the case of suspected heart failure, it is desirable to measure PAWP by right heart catheterization (RHC). However, RHC is an invasive procedure accompanied with the risk of complication. Therefore, a method to quantitatively estimate PAWP from chest radiographs by a regression convolutional neural network (R-CNN) was proposed as the previous study. The risk of complication is eliminated because the method is non-invasive. Moreover, developed R-CNN includes regression activation map (RAM), which is one of the white-box techniques for CNN. However, tuning hyper parameters of R-CNN (e.g., input image size and data augmentation) developed in previous researches, is insufficient. Therefore, we carry out sensitivity analyses of input image sizes and data augmentation against estimating PAWP from chest radiographs. Through these analyses, we found the appropriate input image size and data augmentation.</description><subject>Artificial neural networks</subject><subject>Chest</subject><subject>Data augmentation</subject><subject>Heart diseases</subject><subject>Heart failure</subject><subject>Neural networks</subject><subject>Pulmonary arteries</subject><subject>Radiographs</subject><subject>Regression</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkF9LwzAUxYMoOKcPfoOAb0JnbtKk7aMMnYOBLwq-lbRNu862qfnjmF_Cr2zqBhcOF37ncs9B6BbIAohgD3xBQNBEiDM0A84hSgSIczQjJIsjGrOPS3Rl7Y4QmiVJOkO_636UpcO6xuVWWYeNrFrdGDlucdvLRmHb_igshwpL3_RqcNK1esBhAh0I1w4NHn3X60GaA5bGqSB7VQXraJS13ihcHLBRzbRN3lIP37rz0x3Z4UF58y9ur83nNbqoZWfVzUnn6P356W35Em1eV-vl4yYagTEXMUGyNAUOdZ0xKjgvUsLTStCqpIzEIIsMCkprVQPwjJYSJBQ8rqBUSlBesDm6O94djf7yIUq-096Ef2xOU5ElPOFpEqj7I2XL9hg8H00IbQ45kHwqPOf5qXD2B6TQde0</recordid><startdate>20230928</startdate><enddate>20230928</enddate><creator>Omae, Yuto</creator><creator>Saito, Yuki</creator><creator>Fukamachi, Daisuke</creator><creator>Nagashima, Koichi</creator><creator>Okumura, Yasuo</creator><creator>Toyotani, Jun</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230928</creationdate><title>Impact of chest radiograph image size and augmentation on estimating pulmonary artery wedge pressure by regression convolutional neural network</title><author>Omae, Yuto ; Saito, Yuki ; Fukamachi, Daisuke ; Nagashima, Koichi ; Okumura, Yasuo ; Toyotani, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-360988151ff932655b8058d62dc23041ab91b22fef11592ca1a1b54d1cee625b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Chest</topic><topic>Data augmentation</topic><topic>Heart diseases</topic><topic>Heart failure</topic><topic>Neural networks</topic><topic>Pulmonary arteries</topic><topic>Radiographs</topic><topic>Regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omae, Yuto</creatorcontrib><creatorcontrib>Saito, Yuki</creatorcontrib><creatorcontrib>Fukamachi, Daisuke</creatorcontrib><creatorcontrib>Nagashima, Koichi</creatorcontrib><creatorcontrib>Okumura, Yasuo</creatorcontrib><creatorcontrib>Toyotani, Jun</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omae, Yuto</au><au>Saito, Yuki</au><au>Fukamachi, Daisuke</au><au>Nagashima, Koichi</au><au>Okumura, Yasuo</au><au>Toyotani, Jun</au><au>Vlachos, Dimitrios</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Impact of chest radiograph image size and augmentation on estimating pulmonary artery wedge pressure by regression convolutional neural network</atitle><btitle>AIP conference proceedings</btitle><date>2023-09-28</date><risdate>2023</risdate><volume>2872</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Heart failure is related to pulmonary artery wedge pressure (PAWP), which is one of the measurements for diagnosing heart disease. In the case of suspected heart failure, it is desirable to measure PAWP by right heart catheterization (RHC). However, RHC is an invasive procedure accompanied with the risk of complication. Therefore, a method to quantitatively estimate PAWP from chest radiographs by a regression convolutional neural network (R-CNN) was proposed as the previous study. The risk of complication is eliminated because the method is non-invasive. Moreover, developed R-CNN includes regression activation map (RAM), which is one of the white-box techniques for CNN. However, tuning hyper parameters of R-CNN (e.g., input image size and data augmentation) developed in previous researches, is insufficient. Therefore, we carry out sensitivity analyses of input image sizes and data augmentation against estimating PAWP from chest radiographs. Through these analyses, we found the appropriate input image size and data augmentation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0162766</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2872 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2869757587
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Artificial neural networks
Chest
Data augmentation
Heart diseases
Heart failure
Neural networks
Pulmonary arteries
Radiographs
Regression
title Impact of chest radiograph image size and augmentation on estimating pulmonary artery wedge pressure by regression convolutional neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A18%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Impact%20of%20chest%20radiograph%20image%20size%20and%20augmentation%20on%20estimating%20pulmonary%20artery%20wedge%20pressure%20by%20regression%20convolutional%20neural%20network&rft.btitle=AIP%20conference%20proceedings&rft.au=Omae,%20Yuto&rft.date=2023-09-28&rft.volume=2872&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0162766&rft_dat=%3Cproquest_scita%3E2869757587%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p133t-360988151ff932655b8058d62dc23041ab91b22fef11592ca1a1b54d1cee625b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869757587&rft_id=info:pmid/&rfr_iscdi=true