Loading…
Large and Moderate Deviation Principles for McKean-Vlasov SDEs with Jumps
In this paper, we consider McKean-Vlasov stochastic differential equations (MVSDEs) driven by Lévy noise. By identifying the right equations satisfied by the solutions of the MVSDEs with shifted driving Lévy noise, we build up a framework to fully apply the weak convergence method to establish large...
Saved in:
Published in: | Potential analysis 2023-10, Vol.59 (3), p.1141-1190 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-ef657e7c39195acc4a0482a14800b6959565408deeaed513723d1046cc07af383 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-ef657e7c39195acc4a0482a14800b6959565408deeaed513723d1046cc07af383 |
container_end_page | 1190 |
container_issue | 3 |
container_start_page | 1141 |
container_title | Potential analysis |
container_volume | 59 |
creator | Liu, Wei Song, Yulin Zhai, Jianliang Zhang, Tusheng |
description | In this paper, we consider McKean-Vlasov stochastic differential equations (MVSDEs) driven by Lévy noise. By identifying the right equations satisfied by the solutions of the MVSDEs with shifted driving Lévy noise, we build up a framework to fully apply the weak convergence method to establish large and moderate deviation principles for MVSDEs. In the case of ordinary SDEs, the rate function is calculated by using the solutions of the corresponding skeleton equations simply replacing the noise by the elements of the Cameron-Martin space. It turns out that the correct rate function for MVSDEs is defined through the solutions of skeleton equations replacing the noise by smooth functions and replacing the distributions involved in the equation by the distribution of the solution of the corresponding deterministic equation (without the noise). This is somehow surprising. With this approach, we obtain large and moderate deviation principles for much wider classes of MVSDEs in comparison with the existing literature see Dos Reis et al. (Ann. Appl. Probab.
29
, 1487–1540,
2019
). |
doi_str_mv | 10.1007/s11118-022-10005-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2870006316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870006316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ef657e7c39195acc4a0482a14800b6959565408deeaed513723d1046cc07af383</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SSbJLNUdpaqy0KfuAtxGy2bml312Rb8d8bXcGbcxkGnneGeRA6pXBOAdRFpKlyAoyRNIMgsIcGVChGNNMv-2gAmknCJNBDdBTjKjFMqXyAZnMblh7busCLpvDBdh6P_a6yXdXU-D5UtavatY-4bAJeuFtva_K8trHZ4YfxJOKPqnvDN9tNG4_RQWnX0Z_89iF6upo8jq7J_G46G13OieNUd8SXUiivHNdUC-tcZiHLmaVZDvAqtdBCigzywnvrC0G5YrygkEnnQNmS53yIzvq9bWjetz52ZtVsQ51OGpar9JjkVCaK9ZQLTYzBl6YN1caGT0PBfCszvTKTlJkfZQZSiPehmOB66cPf6n9SX_JbbJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870006316</pqid></control><display><type>article</type><title>Large and Moderate Deviation Principles for McKean-Vlasov SDEs with Jumps</title><source>Springer Link</source><creator>Liu, Wei ; Song, Yulin ; Zhai, Jianliang ; Zhang, Tusheng</creator><creatorcontrib>Liu, Wei ; Song, Yulin ; Zhai, Jianliang ; Zhang, Tusheng</creatorcontrib><description>In this paper, we consider McKean-Vlasov stochastic differential equations (MVSDEs) driven by Lévy noise. By identifying the right equations satisfied by the solutions of the MVSDEs with shifted driving Lévy noise, we build up a framework to fully apply the weak convergence method to establish large and moderate deviation principles for MVSDEs. In the case of ordinary SDEs, the rate function is calculated by using the solutions of the corresponding skeleton equations simply replacing the noise by the elements of the Cameron-Martin space. It turns out that the correct rate function for MVSDEs is defined through the solutions of skeleton equations replacing the noise by smooth functions and replacing the distributions involved in the equation by the distribution of the solution of the corresponding deterministic equation (without the noise). This is somehow surprising. With this approach, we obtain large and moderate deviation principles for much wider classes of MVSDEs in comparison with the existing literature see Dos Reis et al. (Ann. Appl. Probab.
29
, 1487–1540,
2019
).</description><identifier>ISSN: 0926-2601</identifier><identifier>EISSN: 1572-929X</identifier><identifier>DOI: 10.1007/s11118-022-10005-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Deviation ; Differential equations ; Functional Analysis ; Geometry ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Potential Theory ; Principles ; Probability Theory and Stochastic Processes</subject><ispartof>Potential analysis, 2023-10, Vol.59 (3), p.1141-1190</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ef657e7c39195acc4a0482a14800b6959565408deeaed513723d1046cc07af383</citedby><cites>FETCH-LOGICAL-c319t-ef657e7c39195acc4a0482a14800b6959565408deeaed513723d1046cc07af383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Song, Yulin</creatorcontrib><creatorcontrib>Zhai, Jianliang</creatorcontrib><creatorcontrib>Zhang, Tusheng</creatorcontrib><title>Large and Moderate Deviation Principles for McKean-Vlasov SDEs with Jumps</title><title>Potential analysis</title><addtitle>Potential Anal</addtitle><description>In this paper, we consider McKean-Vlasov stochastic differential equations (MVSDEs) driven by Lévy noise. By identifying the right equations satisfied by the solutions of the MVSDEs with shifted driving Lévy noise, we build up a framework to fully apply the weak convergence method to establish large and moderate deviation principles for MVSDEs. In the case of ordinary SDEs, the rate function is calculated by using the solutions of the corresponding skeleton equations simply replacing the noise by the elements of the Cameron-Martin space. It turns out that the correct rate function for MVSDEs is defined through the solutions of skeleton equations replacing the noise by smooth functions and replacing the distributions involved in the equation by the distribution of the solution of the corresponding deterministic equation (without the noise). This is somehow surprising. With this approach, we obtain large and moderate deviation principles for much wider classes of MVSDEs in comparison with the existing literature see Dos Reis et al. (Ann. Appl. Probab.
29
, 1487–1540,
2019
).</description><subject>Deviation</subject><subject>Differential equations</subject><subject>Functional Analysis</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Potential Theory</subject><subject>Principles</subject><subject>Probability Theory and Stochastic Processes</subject><issn>0926-2601</issn><issn>1572-929X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SSbJLNUdpaqy0KfuAtxGy2bml312Rb8d8bXcGbcxkGnneGeRA6pXBOAdRFpKlyAoyRNIMgsIcGVChGNNMv-2gAmknCJNBDdBTjKjFMqXyAZnMblh7busCLpvDBdh6P_a6yXdXU-D5UtavatY-4bAJeuFtva_K8trHZ4YfxJOKPqnvDN9tNG4_RQWnX0Z_89iF6upo8jq7J_G46G13OieNUd8SXUiivHNdUC-tcZiHLmaVZDvAqtdBCigzywnvrC0G5YrygkEnnQNmS53yIzvq9bWjetz52ZtVsQ51OGpar9JjkVCaK9ZQLTYzBl6YN1caGT0PBfCszvTKTlJkfZQZSiPehmOB66cPf6n9SX_JbbJg</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Liu, Wei</creator><creator>Song, Yulin</creator><creator>Zhai, Jianliang</creator><creator>Zhang, Tusheng</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Large and Moderate Deviation Principles for McKean-Vlasov SDEs with Jumps</title><author>Liu, Wei ; Song, Yulin ; Zhai, Jianliang ; Zhang, Tusheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ef657e7c39195acc4a0482a14800b6959565408deeaed513723d1046cc07af383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Deviation</topic><topic>Differential equations</topic><topic>Functional Analysis</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Potential Theory</topic><topic>Principles</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Song, Yulin</creatorcontrib><creatorcontrib>Zhai, Jianliang</creatorcontrib><creatorcontrib>Zhang, Tusheng</creatorcontrib><collection>CrossRef</collection><jtitle>Potential analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wei</au><au>Song, Yulin</au><au>Zhai, Jianliang</au><au>Zhang, Tusheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large and Moderate Deviation Principles for McKean-Vlasov SDEs with Jumps</atitle><jtitle>Potential analysis</jtitle><stitle>Potential Anal</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>59</volume><issue>3</issue><spage>1141</spage><epage>1190</epage><pages>1141-1190</pages><issn>0926-2601</issn><eissn>1572-929X</eissn><abstract>In this paper, we consider McKean-Vlasov stochastic differential equations (MVSDEs) driven by Lévy noise. By identifying the right equations satisfied by the solutions of the MVSDEs with shifted driving Lévy noise, we build up a framework to fully apply the weak convergence method to establish large and moderate deviation principles for MVSDEs. In the case of ordinary SDEs, the rate function is calculated by using the solutions of the corresponding skeleton equations simply replacing the noise by the elements of the Cameron-Martin space. It turns out that the correct rate function for MVSDEs is defined through the solutions of skeleton equations replacing the noise by smooth functions and replacing the distributions involved in the equation by the distribution of the solution of the corresponding deterministic equation (without the noise). This is somehow surprising. With this approach, we obtain large and moderate deviation principles for much wider classes of MVSDEs in comparison with the existing literature see Dos Reis et al. (Ann. Appl. Probab.
29
, 1487–1540,
2019
).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11118-022-10005-0</doi><tpages>50</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-2601 |
ispartof | Potential analysis, 2023-10, Vol.59 (3), p.1141-1190 |
issn | 0926-2601 1572-929X |
language | eng |
recordid | cdi_proquest_journals_2870006316 |
source | Springer Link |
subjects | Deviation Differential equations Functional Analysis Geometry Mathematical analysis Mathematics Mathematics and Statistics Potential Theory Principles Probability Theory and Stochastic Processes |
title | Large and Moderate Deviation Principles for McKean-Vlasov SDEs with Jumps |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A31%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20and%20Moderate%20Deviation%20Principles%20for%20McKean-Vlasov%20SDEs%20with%20Jumps&rft.jtitle=Potential%20analysis&rft.au=Liu,%20Wei&rft.date=2023-10-01&rft.volume=59&rft.issue=3&rft.spage=1141&rft.epage=1190&rft.pages=1141-1190&rft.issn=0926-2601&rft.eissn=1572-929X&rft_id=info:doi/10.1007/s11118-022-10005-0&rft_dat=%3Cproquest_cross%3E2870006316%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-ef657e7c39195acc4a0482a14800b6959565408deeaed513723d1046cc07af383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2870006316&rft_id=info:pmid/&rfr_iscdi=true |