Loading…

Large and Moderate Deviation Principles for McKean-Vlasov SDEs with Jumps

In this paper, we consider McKean-Vlasov stochastic differential equations (MVSDEs) driven by Lévy noise. By identifying the right equations satisfied by the solutions of the MVSDEs with shifted driving Lévy noise, we build up a framework to fully apply the weak convergence method to establish large...

Full description

Saved in:
Bibliographic Details
Published in:Potential analysis 2023-10, Vol.59 (3), p.1141-1190
Main Authors: Liu, Wei, Song, Yulin, Zhai, Jianliang, Zhang, Tusheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-ef657e7c39195acc4a0482a14800b6959565408deeaed513723d1046cc07af383
cites cdi_FETCH-LOGICAL-c319t-ef657e7c39195acc4a0482a14800b6959565408deeaed513723d1046cc07af383
container_end_page 1190
container_issue 3
container_start_page 1141
container_title Potential analysis
container_volume 59
creator Liu, Wei
Song, Yulin
Zhai, Jianliang
Zhang, Tusheng
description In this paper, we consider McKean-Vlasov stochastic differential equations (MVSDEs) driven by Lévy noise. By identifying the right equations satisfied by the solutions of the MVSDEs with shifted driving Lévy noise, we build up a framework to fully apply the weak convergence method to establish large and moderate deviation principles for MVSDEs. In the case of ordinary SDEs, the rate function is calculated by using the solutions of the corresponding skeleton equations simply replacing the noise by the elements of the Cameron-Martin space. It turns out that the correct rate function for MVSDEs is defined through the solutions of skeleton equations replacing the noise by smooth functions and replacing the distributions involved in the equation by the distribution of the solution of the corresponding deterministic equation (without the noise). This is somehow surprising. With this approach, we obtain large and moderate deviation principles for much wider classes of MVSDEs in comparison with the existing literature see Dos Reis et al. (Ann. Appl. Probab. 29 , 1487–1540, 2019 ).
doi_str_mv 10.1007/s11118-022-10005-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2870006316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870006316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ef657e7c39195acc4a0482a14800b6959565408deeaed513723d1046cc07af383</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SSbJLNUdpaqy0KfuAtxGy2bml312Rb8d8bXcGbcxkGnneGeRA6pXBOAdRFpKlyAoyRNIMgsIcGVChGNNMv-2gAmknCJNBDdBTjKjFMqXyAZnMblh7busCLpvDBdh6P_a6yXdXU-D5UtavatY-4bAJeuFtva_K8trHZ4YfxJOKPqnvDN9tNG4_RQWnX0Z_89iF6upo8jq7J_G46G13OieNUd8SXUiivHNdUC-tcZiHLmaVZDvAqtdBCigzywnvrC0G5YrygkEnnQNmS53yIzvq9bWjetz52ZtVsQ51OGpar9JjkVCaK9ZQLTYzBl6YN1caGT0PBfCszvTKTlJkfZQZSiPehmOB66cPf6n9SX_JbbJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870006316</pqid></control><display><type>article</type><title>Large and Moderate Deviation Principles for McKean-Vlasov SDEs with Jumps</title><source>Springer Link</source><creator>Liu, Wei ; Song, Yulin ; Zhai, Jianliang ; Zhang, Tusheng</creator><creatorcontrib>Liu, Wei ; Song, Yulin ; Zhai, Jianliang ; Zhang, Tusheng</creatorcontrib><description>In this paper, we consider McKean-Vlasov stochastic differential equations (MVSDEs) driven by Lévy noise. By identifying the right equations satisfied by the solutions of the MVSDEs with shifted driving Lévy noise, we build up a framework to fully apply the weak convergence method to establish large and moderate deviation principles for MVSDEs. In the case of ordinary SDEs, the rate function is calculated by using the solutions of the corresponding skeleton equations simply replacing the noise by the elements of the Cameron-Martin space. It turns out that the correct rate function for MVSDEs is defined through the solutions of skeleton equations replacing the noise by smooth functions and replacing the distributions involved in the equation by the distribution of the solution of the corresponding deterministic equation (without the noise). This is somehow surprising. With this approach, we obtain large and moderate deviation principles for much wider classes of MVSDEs in comparison with the existing literature see Dos Reis et al. (Ann. Appl. Probab. 29 , 1487–1540, 2019 ).</description><identifier>ISSN: 0926-2601</identifier><identifier>EISSN: 1572-929X</identifier><identifier>DOI: 10.1007/s11118-022-10005-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Deviation ; Differential equations ; Functional Analysis ; Geometry ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Potential Theory ; Principles ; Probability Theory and Stochastic Processes</subject><ispartof>Potential analysis, 2023-10, Vol.59 (3), p.1141-1190</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ef657e7c39195acc4a0482a14800b6959565408deeaed513723d1046cc07af383</citedby><cites>FETCH-LOGICAL-c319t-ef657e7c39195acc4a0482a14800b6959565408deeaed513723d1046cc07af383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Song, Yulin</creatorcontrib><creatorcontrib>Zhai, Jianliang</creatorcontrib><creatorcontrib>Zhang, Tusheng</creatorcontrib><title>Large and Moderate Deviation Principles for McKean-Vlasov SDEs with Jumps</title><title>Potential analysis</title><addtitle>Potential Anal</addtitle><description>In this paper, we consider McKean-Vlasov stochastic differential equations (MVSDEs) driven by Lévy noise. By identifying the right equations satisfied by the solutions of the MVSDEs with shifted driving Lévy noise, we build up a framework to fully apply the weak convergence method to establish large and moderate deviation principles for MVSDEs. In the case of ordinary SDEs, the rate function is calculated by using the solutions of the corresponding skeleton equations simply replacing the noise by the elements of the Cameron-Martin space. It turns out that the correct rate function for MVSDEs is defined through the solutions of skeleton equations replacing the noise by smooth functions and replacing the distributions involved in the equation by the distribution of the solution of the corresponding deterministic equation (without the noise). This is somehow surprising. With this approach, we obtain large and moderate deviation principles for much wider classes of MVSDEs in comparison with the existing literature see Dos Reis et al. (Ann. Appl. Probab. 29 , 1487–1540, 2019 ).</description><subject>Deviation</subject><subject>Differential equations</subject><subject>Functional Analysis</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Potential Theory</subject><subject>Principles</subject><subject>Probability Theory and Stochastic Processes</subject><issn>0926-2601</issn><issn>1572-929X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SSbJLNUdpaqy0KfuAtxGy2bml312Rb8d8bXcGbcxkGnneGeRA6pXBOAdRFpKlyAoyRNIMgsIcGVChGNNMv-2gAmknCJNBDdBTjKjFMqXyAZnMblh7busCLpvDBdh6P_a6yXdXU-D5UtavatY-4bAJeuFtva_K8trHZ4YfxJOKPqnvDN9tNG4_RQWnX0Z_89iF6upo8jq7J_G46G13OieNUd8SXUiivHNdUC-tcZiHLmaVZDvAqtdBCigzywnvrC0G5YrygkEnnQNmS53yIzvq9bWjetz52ZtVsQ51OGpar9JjkVCaK9ZQLTYzBl6YN1caGT0PBfCszvTKTlJkfZQZSiPehmOB66cPf6n9SX_JbbJg</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Liu, Wei</creator><creator>Song, Yulin</creator><creator>Zhai, Jianliang</creator><creator>Zhang, Tusheng</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Large and Moderate Deviation Principles for McKean-Vlasov SDEs with Jumps</title><author>Liu, Wei ; Song, Yulin ; Zhai, Jianliang ; Zhang, Tusheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ef657e7c39195acc4a0482a14800b6959565408deeaed513723d1046cc07af383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Deviation</topic><topic>Differential equations</topic><topic>Functional Analysis</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Potential Theory</topic><topic>Principles</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Song, Yulin</creatorcontrib><creatorcontrib>Zhai, Jianliang</creatorcontrib><creatorcontrib>Zhang, Tusheng</creatorcontrib><collection>CrossRef</collection><jtitle>Potential analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wei</au><au>Song, Yulin</au><au>Zhai, Jianliang</au><au>Zhang, Tusheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large and Moderate Deviation Principles for McKean-Vlasov SDEs with Jumps</atitle><jtitle>Potential analysis</jtitle><stitle>Potential Anal</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>59</volume><issue>3</issue><spage>1141</spage><epage>1190</epage><pages>1141-1190</pages><issn>0926-2601</issn><eissn>1572-929X</eissn><abstract>In this paper, we consider McKean-Vlasov stochastic differential equations (MVSDEs) driven by Lévy noise. By identifying the right equations satisfied by the solutions of the MVSDEs with shifted driving Lévy noise, we build up a framework to fully apply the weak convergence method to establish large and moderate deviation principles for MVSDEs. In the case of ordinary SDEs, the rate function is calculated by using the solutions of the corresponding skeleton equations simply replacing the noise by the elements of the Cameron-Martin space. It turns out that the correct rate function for MVSDEs is defined through the solutions of skeleton equations replacing the noise by smooth functions and replacing the distributions involved in the equation by the distribution of the solution of the corresponding deterministic equation (without the noise). This is somehow surprising. With this approach, we obtain large and moderate deviation principles for much wider classes of MVSDEs in comparison with the existing literature see Dos Reis et al. (Ann. Appl. Probab. 29 , 1487–1540, 2019 ).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11118-022-10005-0</doi><tpages>50</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-2601
ispartof Potential analysis, 2023-10, Vol.59 (3), p.1141-1190
issn 0926-2601
1572-929X
language eng
recordid cdi_proquest_journals_2870006316
source Springer Link
subjects Deviation
Differential equations
Functional Analysis
Geometry
Mathematical analysis
Mathematics
Mathematics and Statistics
Potential Theory
Principles
Probability Theory and Stochastic Processes
title Large and Moderate Deviation Principles for McKean-Vlasov SDEs with Jumps
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A31%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20and%20Moderate%20Deviation%20Principles%20for%20McKean-Vlasov%20SDEs%20with%20Jumps&rft.jtitle=Potential%20analysis&rft.au=Liu,%20Wei&rft.date=2023-10-01&rft.volume=59&rft.issue=3&rft.spage=1141&rft.epage=1190&rft.pages=1141-1190&rft.issn=0926-2601&rft.eissn=1572-929X&rft_id=info:doi/10.1007/s11118-022-10005-0&rft_dat=%3Cproquest_cross%3E2870006316%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-ef657e7c39195acc4a0482a14800b6959565408deeaed513723d1046cc07af383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2870006316&rft_id=info:pmid/&rfr_iscdi=true