Loading…
Duality Method for Solving 3D Contact Problems with Friction
The article studies a 3D contact problem with Coulomb friction for an elastic body resting on a rigid support. The solution of the quasi-variational formulation of the problem is defined as a fixed point of some mapping that associates the given force of the normal reaction of the support with the v...
Saved in:
Published in: | Computational mathematics and mathematical physics 2023-07, Vol.63 (7), p.1350-1361 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-89a18e00b9f4cc1839d5d6e9679748548175784a426ff95900c25ee8b95f11323 |
container_end_page | 1361 |
container_issue | 7 |
container_start_page | 1350 |
container_title | Computational mathematics and mathematical physics |
container_volume | 63 |
creator | Namm, R. V. Tsoy, G. I. |
description | The article studies a 3D contact problem with Coulomb friction for an elastic body resting on a rigid support. The solution of the quasi-variational formulation of the problem is defined as a fixed point of some mapping that associates the given force of the normal reaction of the support with the value of the normal stress in the contact zone. The fixed point is sought by the method of successive approximations, the convergence of which is proved using modified Lagrange functionals. The results of the numerical solution using finite element modeling and the proximal gradient method are presented. |
doi_str_mv | 10.1134/S0965542523070096 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2870006350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870006350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-89a18e00b9f4cc1839d5d6e9679748548175784a426ff95900c25ee8b95f11323</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4Dr0ZvnJOBGWqtCRaG6HqZp0k6ZTmqSKv17M1RwIa4uh_O4nIPQJYFrQhi_mYGWQnAqKIMSMjhCAyKEKKSU9BgNerro-VN0FuMagEit2ADdjnd126Q9frZp5RfY-YBnvv1suiVmYzzyXapNwq_Bz1u7ifirSSs8CY1Jje_O0Ymr22gvfu4QvU_u30aPxfTl4Wl0Ny0MlSoVStdEWYC5dtwYopheiIW0Wpa65EpwRUpRKl5zKp3TQgMYKqxVcy1cLkfZEF0dcrfBf-xsTNXa70KXX1ZU5bYgmYCsIgeVCT7GYF21Dc2mDvuKQNWPVP0ZKXvowROztlva8Jv8v-kbCydl3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870006350</pqid></control><display><type>article</type><title>Duality Method for Solving 3D Contact Problems with Friction</title><source>Springer Nature</source><creator>Namm, R. V. ; Tsoy, G. I.</creator><creatorcontrib>Namm, R. V. ; Tsoy, G. I.</creatorcontrib><description>The article studies a 3D contact problem with Coulomb friction for an elastic body resting on a rigid support. The solution of the quasi-variational formulation of the problem is defined as a fixed point of some mapping that associates the given force of the normal reaction of the support with the value of the normal stress in the contact zone. The fixed point is sought by the method of successive approximations, the convergence of which is proved using modified Lagrange functionals. The results of the numerical solution using finite element modeling and the proximal gradient method are presented.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542523070096</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computational Mathematics and Numerical Analysis ; Contact stresses ; Coulomb friction ; Elastic bodies ; Finite element method ; Mathematical analysis ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Normal stress</subject><ispartof>Computational mathematics and mathematical physics, 2023-07, Vol.63 (7), p.1350-1361</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2023, Vol. 63, No. 7, pp. 1350–1361. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2023, Vol. 63, No. 7, pp. 1225–1237.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-89a18e00b9f4cc1839d5d6e9679748548175784a426ff95900c25ee8b95f11323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Namm, R. V.</creatorcontrib><creatorcontrib>Tsoy, G. I.</creatorcontrib><title>Duality Method for Solving 3D Contact Problems with Friction</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>The article studies a 3D contact problem with Coulomb friction for an elastic body resting on a rigid support. The solution of the quasi-variational formulation of the problem is defined as a fixed point of some mapping that associates the given force of the normal reaction of the support with the value of the normal stress in the contact zone. The fixed point is sought by the method of successive approximations, the convergence of which is proved using modified Lagrange functionals. The results of the numerical solution using finite element modeling and the proximal gradient method are presented.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Contact stresses</subject><subject>Coulomb friction</subject><subject>Elastic bodies</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Normal stress</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgrX6Au4Dr0ZvnJOBGWqtCRaG6HqZp0k6ZTmqSKv17M1RwIa4uh_O4nIPQJYFrQhi_mYGWQnAqKIMSMjhCAyKEKKSU9BgNerro-VN0FuMagEit2ADdjnd126Q9frZp5RfY-YBnvv1suiVmYzzyXapNwq_Bz1u7ifirSSs8CY1Jje_O0Ymr22gvfu4QvU_u30aPxfTl4Wl0Ny0MlSoVStdEWYC5dtwYopheiIW0Wpa65EpwRUpRKl5zKp3TQgMYKqxVcy1cLkfZEF0dcrfBf-xsTNXa70KXX1ZU5bYgmYCsIgeVCT7GYF21Dc2mDvuKQNWPVP0ZKXvowROztlva8Jv8v-kbCydl3w</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Namm, R. V.</creator><creator>Tsoy, G. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230701</creationdate><title>Duality Method for Solving 3D Contact Problems with Friction</title><author>Namm, R. V. ; Tsoy, G. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-89a18e00b9f4cc1839d5d6e9679748548175784a426ff95900c25ee8b95f11323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Contact stresses</topic><topic>Coulomb friction</topic><topic>Elastic bodies</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Normal stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Namm, R. V.</creatorcontrib><creatorcontrib>Tsoy, G. I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Namm, R. V.</au><au>Tsoy, G. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Duality Method for Solving 3D Contact Problems with Friction</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>63</volume><issue>7</issue><spage>1350</spage><epage>1361</epage><pages>1350-1361</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>The article studies a 3D contact problem with Coulomb friction for an elastic body resting on a rigid support. The solution of the quasi-variational formulation of the problem is defined as a fixed point of some mapping that associates the given force of the normal reaction of the support with the value of the normal stress in the contact zone. The fixed point is sought by the method of successive approximations, the convergence of which is proved using modified Lagrange functionals. The results of the numerical solution using finite element modeling and the proximal gradient method are presented.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542523070096</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2023-07, Vol.63 (7), p.1350-1361 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_journals_2870006350 |
source | Springer Nature |
subjects | Computational Mathematics and Numerical Analysis Contact stresses Coulomb friction Elastic bodies Finite element method Mathematical analysis Mathematical Physics Mathematics Mathematics and Statistics Normal stress |
title | Duality Method for Solving 3D Contact Problems with Friction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Duality%20Method%20for%20Solving%203D%20Contact%20Problems%20with%20Friction&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Namm,%20R.%20V.&rft.date=2023-07-01&rft.volume=63&rft.issue=7&rft.spage=1350&rft.epage=1361&rft.pages=1350-1361&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542523070096&rft_dat=%3Cproquest_cross%3E2870006350%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-89a18e00b9f4cc1839d5d6e9679748548175784a426ff95900c25ee8b95f11323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2870006350&rft_id=info:pmid/&rfr_iscdi=true |