Loading…

Duality Method for Solving 3D Contact Problems with Friction

The article studies a 3D contact problem with Coulomb friction for an elastic body resting on a rigid support. The solution of the quasi-variational formulation of the problem is defined as a fixed point of some mapping that associates the given force of the normal reaction of the support with the v...

Full description

Saved in:
Bibliographic Details
Published in:Computational mathematics and mathematical physics 2023-07, Vol.63 (7), p.1350-1361
Main Authors: Namm, R. V., Tsoy, G. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-89a18e00b9f4cc1839d5d6e9679748548175784a426ff95900c25ee8b95f11323
container_end_page 1361
container_issue 7
container_start_page 1350
container_title Computational mathematics and mathematical physics
container_volume 63
creator Namm, R. V.
Tsoy, G. I.
description The article studies a 3D contact problem with Coulomb friction for an elastic body resting on a rigid support. The solution of the quasi-variational formulation of the problem is defined as a fixed point of some mapping that associates the given force of the normal reaction of the support with the value of the normal stress in the contact zone. The fixed point is sought by the method of successive approximations, the convergence of which is proved using modified Lagrange functionals. The results of the numerical solution using finite element modeling and the proximal gradient method are presented.
doi_str_mv 10.1134/S0965542523070096
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2870006350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870006350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-89a18e00b9f4cc1839d5d6e9679748548175784a426ff95900c25ee8b95f11323</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4Dr0ZvnJOBGWqtCRaG6HqZp0k6ZTmqSKv17M1RwIa4uh_O4nIPQJYFrQhi_mYGWQnAqKIMSMjhCAyKEKKSU9BgNerro-VN0FuMagEit2ADdjnd126Q9frZp5RfY-YBnvv1suiVmYzzyXapNwq_Bz1u7ifirSSs8CY1Jje_O0Ymr22gvfu4QvU_u30aPxfTl4Wl0Ny0MlSoVStdEWYC5dtwYopheiIW0Wpa65EpwRUpRKl5zKp3TQgMYKqxVcy1cLkfZEF0dcrfBf-xsTNXa70KXX1ZU5bYgmYCsIgeVCT7GYF21Dc2mDvuKQNWPVP0ZKXvowROztlva8Jv8v-kbCydl3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870006350</pqid></control><display><type>article</type><title>Duality Method for Solving 3D Contact Problems with Friction</title><source>Springer Nature</source><creator>Namm, R. V. ; Tsoy, G. I.</creator><creatorcontrib>Namm, R. V. ; Tsoy, G. I.</creatorcontrib><description>The article studies a 3D contact problem with Coulomb friction for an elastic body resting on a rigid support. The solution of the quasi-variational formulation of the problem is defined as a fixed point of some mapping that associates the given force of the normal reaction of the support with the value of the normal stress in the contact zone. The fixed point is sought by the method of successive approximations, the convergence of which is proved using modified Lagrange functionals. The results of the numerical solution using finite element modeling and the proximal gradient method are presented.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542523070096</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computational Mathematics and Numerical Analysis ; Contact stresses ; Coulomb friction ; Elastic bodies ; Finite element method ; Mathematical analysis ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Normal stress</subject><ispartof>Computational mathematics and mathematical physics, 2023-07, Vol.63 (7), p.1350-1361</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2023, Vol. 63, No. 7, pp. 1350–1361. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2023, Vol. 63, No. 7, pp. 1225–1237.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-89a18e00b9f4cc1839d5d6e9679748548175784a426ff95900c25ee8b95f11323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Namm, R. V.</creatorcontrib><creatorcontrib>Tsoy, G. I.</creatorcontrib><title>Duality Method for Solving 3D Contact Problems with Friction</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>The article studies a 3D contact problem with Coulomb friction for an elastic body resting on a rigid support. The solution of the quasi-variational formulation of the problem is defined as a fixed point of some mapping that associates the given force of the normal reaction of the support with the value of the normal stress in the contact zone. The fixed point is sought by the method of successive approximations, the convergence of which is proved using modified Lagrange functionals. The results of the numerical solution using finite element modeling and the proximal gradient method are presented.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Contact stresses</subject><subject>Coulomb friction</subject><subject>Elastic bodies</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Normal stress</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgrX6Au4Dr0ZvnJOBGWqtCRaG6HqZp0k6ZTmqSKv17M1RwIa4uh_O4nIPQJYFrQhi_mYGWQnAqKIMSMjhCAyKEKKSU9BgNerro-VN0FuMagEit2ADdjnd126Q9frZp5RfY-YBnvv1suiVmYzzyXapNwq_Bz1u7ifirSSs8CY1Jje_O0Ymr22gvfu4QvU_u30aPxfTl4Wl0Ny0MlSoVStdEWYC5dtwYopheiIW0Wpa65EpwRUpRKl5zKp3TQgMYKqxVcy1cLkfZEF0dcrfBf-xsTNXa70KXX1ZU5bYgmYCsIgeVCT7GYF21Dc2mDvuKQNWPVP0ZKXvowROztlva8Jv8v-kbCydl3w</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Namm, R. V.</creator><creator>Tsoy, G. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230701</creationdate><title>Duality Method for Solving 3D Contact Problems with Friction</title><author>Namm, R. V. ; Tsoy, G. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-89a18e00b9f4cc1839d5d6e9679748548175784a426ff95900c25ee8b95f11323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Contact stresses</topic><topic>Coulomb friction</topic><topic>Elastic bodies</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Normal stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Namm, R. V.</creatorcontrib><creatorcontrib>Tsoy, G. I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Namm, R. V.</au><au>Tsoy, G. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Duality Method for Solving 3D Contact Problems with Friction</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>63</volume><issue>7</issue><spage>1350</spage><epage>1361</epage><pages>1350-1361</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>The article studies a 3D contact problem with Coulomb friction for an elastic body resting on a rigid support. The solution of the quasi-variational formulation of the problem is defined as a fixed point of some mapping that associates the given force of the normal reaction of the support with the value of the normal stress in the contact zone. The fixed point is sought by the method of successive approximations, the convergence of which is proved using modified Lagrange functionals. The results of the numerical solution using finite element modeling and the proximal gradient method are presented.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542523070096</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2023-07, Vol.63 (7), p.1350-1361
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_journals_2870006350
source Springer Nature
subjects Computational Mathematics and Numerical Analysis
Contact stresses
Coulomb friction
Elastic bodies
Finite element method
Mathematical analysis
Mathematical Physics
Mathematics
Mathematics and Statistics
Normal stress
title Duality Method for Solving 3D Contact Problems with Friction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Duality%20Method%20for%20Solving%203D%20Contact%20Problems%20with%20Friction&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Namm,%20R.%20V.&rft.date=2023-07-01&rft.volume=63&rft.issue=7&rft.spage=1350&rft.epage=1361&rft.pages=1350-1361&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542523070096&rft_dat=%3Cproquest_cross%3E2870006350%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-89a18e00b9f4cc1839d5d6e9679748548175784a426ff95900c25ee8b95f11323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2870006350&rft_id=info:pmid/&rfr_iscdi=true