Loading…

A Second Order Stabilized Central Difference Method for Singularly Perturbed Differential Equations with a Large Negative Shift

In this paper a stabilized central difference method is presented for the boundary value problem of singularly perturbed differential equations with a large negative shift. The central difference approximations for the derivatives are modified by re-approximating the error terms, leading to a stabil...

Full description

Saved in:
Bibliographic Details
Published in:Differential equations and dynamical systems 2023-10, Vol.31 (4), p.787-804
Main Authors: Kumar, N. Sathya, Rao, R. Nageshwar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-3362d5f04286fe928d746c0445a46fe4b7b0851f2bde307d8293f8e849e7ceb93
cites cdi_FETCH-LOGICAL-c319t-3362d5f04286fe928d746c0445a46fe4b7b0851f2bde307d8293f8e849e7ceb93
container_end_page 804
container_issue 4
container_start_page 787
container_title Differential equations and dynamical systems
container_volume 31
creator Kumar, N. Sathya
Rao, R. Nageshwar
description In this paper a stabilized central difference method is presented for the boundary value problem of singularly perturbed differential equations with a large negative shift. The central difference approximations for the derivatives are modified by re-approximating the error terms, leading to a stabilizing effect. The method is found to be second order convergent. Several numerical examples are solved to demonstrate the efficiency of the method.
doi_str_mv 10.1007/s12591-020-00532-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2870006430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870006430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3362d5f04286fe928d746c0445a46fe4b7b0851f2bde307d8293f8e849e7ceb93</originalsourceid><addsrcrecordid>eNp9kMlOwzAQQCMEEmX5AU6WOAfGS-LkiEpZpLJIhbPlJOPWKCSt7VCVC7-OoSBunDwavTeWXpKcUDijAPLcU5aVNAUGKUDGWbreSUZQSpHmhYTd75mmPKNiPznw_gUgl6WQo-Tjgsyw7ruGPLgGHZkFXdnWvmNDxtgFp1tyaY1Bh12N5A7Dom-I6SNou_nQatduyCO6MLgqKr9osNGbrAYdbN95srZhQTSZajdHco_zuH5DMltYE46SPaNbj8c_72HyfDV5Gt-k04fr2_HFNK05LUPKec6azIBgRW6wZEUjRV6DEJkWcSEqWUGRUcOqBjnIpmAlNwUWokRZY1Xyw-R0e3fp-tWAPqiXfnBd_FKxWCj2EBwixbZU7XrvHRq1dPZVu42ioL5Cq21oFUOr79BqHSW-lXyEuzm6v9P_WJ_QD4Im</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870006430</pqid></control><display><type>article</type><title>A Second Order Stabilized Central Difference Method for Singularly Perturbed Differential Equations with a Large Negative Shift</title><source>Springer Nature</source><creator>Kumar, N. Sathya ; Rao, R. Nageshwar</creator><creatorcontrib>Kumar, N. Sathya ; Rao, R. Nageshwar</creatorcontrib><description>In this paper a stabilized central difference method is presented for the boundary value problem of singularly perturbed differential equations with a large negative shift. The central difference approximations for the derivatives are modified by re-approximating the error terms, leading to a stabilizing effect. The method is found to be second order convergent. Several numerical examples are solved to demonstrate the efficiency of the method.</description><identifier>ISSN: 0971-3514</identifier><identifier>EISSN: 0974-6870</identifier><identifier>DOI: 10.1007/s12591-020-00532-w</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Approximation ; Boundary value problems ; Computer Science ; Differential equations ; Engineering ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Original Research ; Singular perturbation methods</subject><ispartof>Differential equations and dynamical systems, 2023-10, Vol.31 (4), p.787-804</ispartof><rights>Foundation for Scientific Research and Technological Innovation 2020</rights><rights>Foundation for Scientific Research and Technological Innovation 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3362d5f04286fe928d746c0445a46fe4b7b0851f2bde307d8293f8e849e7ceb93</citedby><cites>FETCH-LOGICAL-c319t-3362d5f04286fe928d746c0445a46fe4b7b0851f2bde307d8293f8e849e7ceb93</cites><orcidid>0000-0003-4225-1927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kumar, N. Sathya</creatorcontrib><creatorcontrib>Rao, R. Nageshwar</creatorcontrib><title>A Second Order Stabilized Central Difference Method for Singularly Perturbed Differential Equations with a Large Negative Shift</title><title>Differential equations and dynamical systems</title><addtitle>Differ Equ Dyn Syst</addtitle><description>In this paper a stabilized central difference method is presented for the boundary value problem of singularly perturbed differential equations with a large negative shift. The central difference approximations for the derivatives are modified by re-approximating the error terms, leading to a stabilizing effect. The method is found to be second order convergent. Several numerical examples are solved to demonstrate the efficiency of the method.</description><subject>Approximation</subject><subject>Boundary value problems</subject><subject>Computer Science</subject><subject>Differential equations</subject><subject>Engineering</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Research</subject><subject>Singular perturbation methods</subject><issn>0971-3514</issn><issn>0974-6870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAQQCMEEmX5AU6WOAfGS-LkiEpZpLJIhbPlJOPWKCSt7VCVC7-OoSBunDwavTeWXpKcUDijAPLcU5aVNAUGKUDGWbreSUZQSpHmhYTd75mmPKNiPznw_gUgl6WQo-Tjgsyw7ruGPLgGHZkFXdnWvmNDxtgFp1tyaY1Bh12N5A7Dom-I6SNou_nQatduyCO6MLgqKr9osNGbrAYdbN95srZhQTSZajdHco_zuH5DMltYE46SPaNbj8c_72HyfDV5Gt-k04fr2_HFNK05LUPKec6azIBgRW6wZEUjRV6DEJkWcSEqWUGRUcOqBjnIpmAlNwUWokRZY1Xyw-R0e3fp-tWAPqiXfnBd_FKxWCj2EBwixbZU7XrvHRq1dPZVu42ioL5Cq21oFUOr79BqHSW-lXyEuzm6v9P_WJ_QD4Im</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Kumar, N. Sathya</creator><creator>Rao, R. Nageshwar</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4225-1927</orcidid></search><sort><creationdate>20231001</creationdate><title>A Second Order Stabilized Central Difference Method for Singularly Perturbed Differential Equations with a Large Negative Shift</title><author>Kumar, N. Sathya ; Rao, R. Nageshwar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3362d5f04286fe928d746c0445a46fe4b7b0851f2bde307d8293f8e849e7ceb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Boundary value problems</topic><topic>Computer Science</topic><topic>Differential equations</topic><topic>Engineering</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Research</topic><topic>Singular perturbation methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, N. Sathya</creatorcontrib><creatorcontrib>Rao, R. Nageshwar</creatorcontrib><collection>CrossRef</collection><jtitle>Differential equations and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, N. Sathya</au><au>Rao, R. Nageshwar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Second Order Stabilized Central Difference Method for Singularly Perturbed Differential Equations with a Large Negative Shift</atitle><jtitle>Differential equations and dynamical systems</jtitle><stitle>Differ Equ Dyn Syst</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>31</volume><issue>4</issue><spage>787</spage><epage>804</epage><pages>787-804</pages><issn>0971-3514</issn><eissn>0974-6870</eissn><abstract>In this paper a stabilized central difference method is presented for the boundary value problem of singularly perturbed differential equations with a large negative shift. The central difference approximations for the derivatives are modified by re-approximating the error terms, leading to a stabilizing effect. The method is found to be second order convergent. Several numerical examples are solved to demonstrate the efficiency of the method.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12591-020-00532-w</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4225-1927</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0971-3514
ispartof Differential equations and dynamical systems, 2023-10, Vol.31 (4), p.787-804
issn 0971-3514
0974-6870
language eng
recordid cdi_proquest_journals_2870006430
source Springer Nature
subjects Approximation
Boundary value problems
Computer Science
Differential equations
Engineering
Mathematical analysis
Mathematics
Mathematics and Statistics
Original Research
Singular perturbation methods
title A Second Order Stabilized Central Difference Method for Singularly Perturbed Differential Equations with a Large Negative Shift
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Second%20Order%20Stabilized%20Central%20Difference%20Method%20for%20Singularly%20Perturbed%20Differential%20Equations%20with%20a%20Large%20Negative%20Shift&rft.jtitle=Differential%20equations%20and%20dynamical%20systems&rft.au=Kumar,%20N.%20Sathya&rft.date=2023-10-01&rft.volume=31&rft.issue=4&rft.spage=787&rft.epage=804&rft.pages=787-804&rft.issn=0971-3514&rft.eissn=0974-6870&rft_id=info:doi/10.1007/s12591-020-00532-w&rft_dat=%3Cproquest_cross%3E2870006430%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-3362d5f04286fe928d746c0445a46fe4b7b0851f2bde307d8293f8e849e7ceb93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2870006430&rft_id=info:pmid/&rfr_iscdi=true