Loading…

Compositional Sculpting of Iterative Generative Processes

High training costs of generative models and the need to fine-tune them for specific tasks have created a strong interest in model reuse and composition. A key challenge in composing iterative generative processes, such as GFlowNets and diffusion models, is that to realize the desired target distrib...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-09
Main Authors: Garipov, Timur, De Peuter, Sebastiaan, Yang, Ge, Garg, Vikas, Kaski, Samuel, Jaakkola, Tommi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Garipov, Timur
De Peuter, Sebastiaan
Yang, Ge
Garg, Vikas
Kaski, Samuel
Jaakkola, Tommi
description High training costs of generative models and the need to fine-tune them for specific tasks have created a strong interest in model reuse and composition. A key challenge in composing iterative generative processes, such as GFlowNets and diffusion models, is that to realize the desired target distribution, all steps of the generative process need to be coordinated, and satisfy delicate balance conditions. In this work, we propose Compositional Sculpting: a general approach for defining compositions of iterative generative processes. We then introduce a method for sampling from these compositions built on classifier guidance. We showcase ways to accomplish compositional sculpting in both GFlowNets and diffusion models. We highlight two binary operations \(\unicode{x2014}\) the harmonic mean (\(p_1 \otimes p_2\)) and the contrast (\(p_1 \unicode{x25D1}\,p_2\)) between pairs, and the generalization of these operations to multiple component distributions. We offer empirical results on image and molecular generation tasks.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2870188232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870188232</sourcerecordid><originalsourceid>FETCH-proquest_journals_28701882323</originalsourceid><addsrcrecordid>eNqNjD0LwjAUAIMgWLT_IeBcSF-sjXPxaxN0L6G8Skrti3mJv18H3Z3uhuNmIgOty8JsABYiZx6UUrCtoap0JnYNPTyxi44mO8prl0Yf3XSX1MtzxGCje6E84vTTS6AOmZFXYt7bkTH_cinWh_2tORU-0DMhx3agFD5TbsHUqjQGNOj_qjfORzcN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870188232</pqid></control><display><type>article</type><title>Compositional Sculpting of Iterative Generative Processes</title><source>Publicly Available Content (ProQuest)</source><creator>Garipov, Timur ; De Peuter, Sebastiaan ; Yang, Ge ; Garg, Vikas ; Kaski, Samuel ; Jaakkola, Tommi</creator><creatorcontrib>Garipov, Timur ; De Peuter, Sebastiaan ; Yang, Ge ; Garg, Vikas ; Kaski, Samuel ; Jaakkola, Tommi</creatorcontrib><description>High training costs of generative models and the need to fine-tune them for specific tasks have created a strong interest in model reuse and composition. A key challenge in composing iterative generative processes, such as GFlowNets and diffusion models, is that to realize the desired target distribution, all steps of the generative process need to be coordinated, and satisfy delicate balance conditions. In this work, we propose Compositional Sculpting: a general approach for defining compositions of iterative generative processes. We then introduce a method for sampling from these compositions built on classifier guidance. We showcase ways to accomplish compositional sculpting in both GFlowNets and diffusion models. We highlight two binary operations \(\unicode{x2014}\) the harmonic mean (\(p_1 \otimes p_2\)) and the contrast (\(p_1 \unicode{x25D1}\,p_2\)) between pairs, and the generalization of these operations to multiple component distributions. We offer empirical results on image and molecular generation tasks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Composition ; Iterative methods</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2870188232?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Garipov, Timur</creatorcontrib><creatorcontrib>De Peuter, Sebastiaan</creatorcontrib><creatorcontrib>Yang, Ge</creatorcontrib><creatorcontrib>Garg, Vikas</creatorcontrib><creatorcontrib>Kaski, Samuel</creatorcontrib><creatorcontrib>Jaakkola, Tommi</creatorcontrib><title>Compositional Sculpting of Iterative Generative Processes</title><title>arXiv.org</title><description>High training costs of generative models and the need to fine-tune them for specific tasks have created a strong interest in model reuse and composition. A key challenge in composing iterative generative processes, such as GFlowNets and diffusion models, is that to realize the desired target distribution, all steps of the generative process need to be coordinated, and satisfy delicate balance conditions. In this work, we propose Compositional Sculpting: a general approach for defining compositions of iterative generative processes. We then introduce a method for sampling from these compositions built on classifier guidance. We showcase ways to accomplish compositional sculpting in both GFlowNets and diffusion models. We highlight two binary operations \(\unicode{x2014}\) the harmonic mean (\(p_1 \otimes p_2\)) and the contrast (\(p_1 \unicode{x25D1}\,p_2\)) between pairs, and the generalization of these operations to multiple component distributions. We offer empirical results on image and molecular generation tasks.</description><subject>Composition</subject><subject>Iterative methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjD0LwjAUAIMgWLT_IeBcSF-sjXPxaxN0L6G8Skrti3mJv18H3Z3uhuNmIgOty8JsABYiZx6UUrCtoap0JnYNPTyxi44mO8prl0Yf3XSX1MtzxGCje6E84vTTS6AOmZFXYt7bkTH_cinWh_2tORU-0DMhx3agFD5TbsHUqjQGNOj_qjfORzcN</recordid><startdate>20230928</startdate><enddate>20230928</enddate><creator>Garipov, Timur</creator><creator>De Peuter, Sebastiaan</creator><creator>Yang, Ge</creator><creator>Garg, Vikas</creator><creator>Kaski, Samuel</creator><creator>Jaakkola, Tommi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230928</creationdate><title>Compositional Sculpting of Iterative Generative Processes</title><author>Garipov, Timur ; De Peuter, Sebastiaan ; Yang, Ge ; Garg, Vikas ; Kaski, Samuel ; Jaakkola, Tommi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28701882323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Composition</topic><topic>Iterative methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Garipov, Timur</creatorcontrib><creatorcontrib>De Peuter, Sebastiaan</creatorcontrib><creatorcontrib>Yang, Ge</creatorcontrib><creatorcontrib>Garg, Vikas</creatorcontrib><creatorcontrib>Kaski, Samuel</creatorcontrib><creatorcontrib>Jaakkola, Tommi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garipov, Timur</au><au>De Peuter, Sebastiaan</au><au>Yang, Ge</au><au>Garg, Vikas</au><au>Kaski, Samuel</au><au>Jaakkola, Tommi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Compositional Sculpting of Iterative Generative Processes</atitle><jtitle>arXiv.org</jtitle><date>2023-09-28</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>High training costs of generative models and the need to fine-tune them for specific tasks have created a strong interest in model reuse and composition. A key challenge in composing iterative generative processes, such as GFlowNets and diffusion models, is that to realize the desired target distribution, all steps of the generative process need to be coordinated, and satisfy delicate balance conditions. In this work, we propose Compositional Sculpting: a general approach for defining compositions of iterative generative processes. We then introduce a method for sampling from these compositions built on classifier guidance. We showcase ways to accomplish compositional sculpting in both GFlowNets and diffusion models. We highlight two binary operations \(\unicode{x2014}\) the harmonic mean (\(p_1 \otimes p_2\)) and the contrast (\(p_1 \unicode{x25D1}\,p_2\)) between pairs, and the generalization of these operations to multiple component distributions. We offer empirical results on image and molecular generation tasks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2870188232
source Publicly Available Content (ProQuest)
subjects Composition
Iterative methods
title Compositional Sculpting of Iterative Generative Processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A25%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Compositional%20Sculpting%20of%20Iterative%20Generative%20Processes&rft.jtitle=arXiv.org&rft.au=Garipov,%20Timur&rft.date=2023-09-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2870188232%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28701882323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2870188232&rft_id=info:pmid/&rfr_iscdi=true