Loading…
Compositional Sculpting of Iterative Generative Processes
High training costs of generative models and the need to fine-tune them for specific tasks have created a strong interest in model reuse and composition. A key challenge in composing iterative generative processes, such as GFlowNets and diffusion models, is that to realize the desired target distrib...
Saved in:
Published in: | arXiv.org 2023-09 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Garipov, Timur De Peuter, Sebastiaan Yang, Ge Garg, Vikas Kaski, Samuel Jaakkola, Tommi |
description | High training costs of generative models and the need to fine-tune them for specific tasks have created a strong interest in model reuse and composition. A key challenge in composing iterative generative processes, such as GFlowNets and diffusion models, is that to realize the desired target distribution, all steps of the generative process need to be coordinated, and satisfy delicate balance conditions. In this work, we propose Compositional Sculpting: a general approach for defining compositions of iterative generative processes. We then introduce a method for sampling from these compositions built on classifier guidance. We showcase ways to accomplish compositional sculpting in both GFlowNets and diffusion models. We highlight two binary operations \(\unicode{x2014}\) the harmonic mean (\(p_1 \otimes p_2\)) and the contrast (\(p_1 \unicode{x25D1}\,p_2\)) between pairs, and the generalization of these operations to multiple component distributions. We offer empirical results on image and molecular generation tasks. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2870188232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870188232</sourcerecordid><originalsourceid>FETCH-proquest_journals_28701882323</originalsourceid><addsrcrecordid>eNqNjD0LwjAUAIMgWLT_IeBcSF-sjXPxaxN0L6G8Skrti3mJv18H3Z3uhuNmIgOty8JsABYiZx6UUrCtoap0JnYNPTyxi44mO8prl0Yf3XSX1MtzxGCje6E84vTTS6AOmZFXYt7bkTH_cinWh_2tORU-0DMhx3agFD5TbsHUqjQGNOj_qjfORzcN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870188232</pqid></control><display><type>article</type><title>Compositional Sculpting of Iterative Generative Processes</title><source>Publicly Available Content (ProQuest)</source><creator>Garipov, Timur ; De Peuter, Sebastiaan ; Yang, Ge ; Garg, Vikas ; Kaski, Samuel ; Jaakkola, Tommi</creator><creatorcontrib>Garipov, Timur ; De Peuter, Sebastiaan ; Yang, Ge ; Garg, Vikas ; Kaski, Samuel ; Jaakkola, Tommi</creatorcontrib><description>High training costs of generative models and the need to fine-tune them for specific tasks have created a strong interest in model reuse and composition. A key challenge in composing iterative generative processes, such as GFlowNets and diffusion models, is that to realize the desired target distribution, all steps of the generative process need to be coordinated, and satisfy delicate balance conditions. In this work, we propose Compositional Sculpting: a general approach for defining compositions of iterative generative processes. We then introduce a method for sampling from these compositions built on classifier guidance. We showcase ways to accomplish compositional sculpting in both GFlowNets and diffusion models. We highlight two binary operations \(\unicode{x2014}\) the harmonic mean (\(p_1 \otimes p_2\)) and the contrast (\(p_1 \unicode{x25D1}\,p_2\)) between pairs, and the generalization of these operations to multiple component distributions. We offer empirical results on image and molecular generation tasks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Composition ; Iterative methods</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2870188232?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Garipov, Timur</creatorcontrib><creatorcontrib>De Peuter, Sebastiaan</creatorcontrib><creatorcontrib>Yang, Ge</creatorcontrib><creatorcontrib>Garg, Vikas</creatorcontrib><creatorcontrib>Kaski, Samuel</creatorcontrib><creatorcontrib>Jaakkola, Tommi</creatorcontrib><title>Compositional Sculpting of Iterative Generative Processes</title><title>arXiv.org</title><description>High training costs of generative models and the need to fine-tune them for specific tasks have created a strong interest in model reuse and composition. A key challenge in composing iterative generative processes, such as GFlowNets and diffusion models, is that to realize the desired target distribution, all steps of the generative process need to be coordinated, and satisfy delicate balance conditions. In this work, we propose Compositional Sculpting: a general approach for defining compositions of iterative generative processes. We then introduce a method for sampling from these compositions built on classifier guidance. We showcase ways to accomplish compositional sculpting in both GFlowNets and diffusion models. We highlight two binary operations \(\unicode{x2014}\) the harmonic mean (\(p_1 \otimes p_2\)) and the contrast (\(p_1 \unicode{x25D1}\,p_2\)) between pairs, and the generalization of these operations to multiple component distributions. We offer empirical results on image and molecular generation tasks.</description><subject>Composition</subject><subject>Iterative methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjD0LwjAUAIMgWLT_IeBcSF-sjXPxaxN0L6G8Skrti3mJv18H3Z3uhuNmIgOty8JsABYiZx6UUrCtoap0JnYNPTyxi44mO8prl0Yf3XSX1MtzxGCje6E84vTTS6AOmZFXYt7bkTH_cinWh_2tORU-0DMhx3agFD5TbsHUqjQGNOj_qjfORzcN</recordid><startdate>20230928</startdate><enddate>20230928</enddate><creator>Garipov, Timur</creator><creator>De Peuter, Sebastiaan</creator><creator>Yang, Ge</creator><creator>Garg, Vikas</creator><creator>Kaski, Samuel</creator><creator>Jaakkola, Tommi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230928</creationdate><title>Compositional Sculpting of Iterative Generative Processes</title><author>Garipov, Timur ; De Peuter, Sebastiaan ; Yang, Ge ; Garg, Vikas ; Kaski, Samuel ; Jaakkola, Tommi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28701882323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Composition</topic><topic>Iterative methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Garipov, Timur</creatorcontrib><creatorcontrib>De Peuter, Sebastiaan</creatorcontrib><creatorcontrib>Yang, Ge</creatorcontrib><creatorcontrib>Garg, Vikas</creatorcontrib><creatorcontrib>Kaski, Samuel</creatorcontrib><creatorcontrib>Jaakkola, Tommi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garipov, Timur</au><au>De Peuter, Sebastiaan</au><au>Yang, Ge</au><au>Garg, Vikas</au><au>Kaski, Samuel</au><au>Jaakkola, Tommi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Compositional Sculpting of Iterative Generative Processes</atitle><jtitle>arXiv.org</jtitle><date>2023-09-28</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>High training costs of generative models and the need to fine-tune them for specific tasks have created a strong interest in model reuse and composition. A key challenge in composing iterative generative processes, such as GFlowNets and diffusion models, is that to realize the desired target distribution, all steps of the generative process need to be coordinated, and satisfy delicate balance conditions. In this work, we propose Compositional Sculpting: a general approach for defining compositions of iterative generative processes. We then introduce a method for sampling from these compositions built on classifier guidance. We showcase ways to accomplish compositional sculpting in both GFlowNets and diffusion models. We highlight two binary operations \(\unicode{x2014}\) the harmonic mean (\(p_1 \otimes p_2\)) and the contrast (\(p_1 \unicode{x25D1}\,p_2\)) between pairs, and the generalization of these operations to multiple component distributions. We offer empirical results on image and molecular generation tasks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2870188232 |
source | Publicly Available Content (ProQuest) |
subjects | Composition Iterative methods |
title | Compositional Sculpting of Iterative Generative Processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A25%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Compositional%20Sculpting%20of%20Iterative%20Generative%20Processes&rft.jtitle=arXiv.org&rft.au=Garipov,%20Timur&rft.date=2023-09-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2870188232%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28701882323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2870188232&rft_id=info:pmid/&rfr_iscdi=true |