Loading…

Supermolecular assembly networks functionalized MXene toward fire-resistant thermoplastic polyurethane nanocomposites

A new N–P–Cu containing supermolecular assembly network (MPCSN) was fabricated with titanium carbide (Ti 3 C 2 T x ) nanosheets through intermolecular forces, and then, the flame-retardant thermoplastic polyurethane (TPU) nanocomposites were synthesized by melt blending. The obtained results of the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal analysis and calorimetry 2023-10, Vol.148 (19), p.10051-10063
Main Authors: Nie, Chenxin, Yang, Jian, Deng, Guojun, Feng, Yuezhan, Shi, Yongqian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-82b16327e3a8e5d14a6e16c84a0479e273f3abdd428b80cccc25a127e1df8883
cites cdi_FETCH-LOGICAL-c392t-82b16327e3a8e5d14a6e16c84a0479e273f3abdd428b80cccc25a127e1df8883
container_end_page 10063
container_issue 19
container_start_page 10051
container_title Journal of thermal analysis and calorimetry
container_volume 148
creator Nie, Chenxin
Yang, Jian
Deng, Guojun
Feng, Yuezhan
Shi, Yongqian
description A new N–P–Cu containing supermolecular assembly network (MPCSN) was fabricated with titanium carbide (Ti 3 C 2 T x ) nanosheets through intermolecular forces, and then, the flame-retardant thermoplastic polyurethane (TPU) nanocomposites were synthesized by melt blending. The obtained results of the TPU/Ti 3 C 2 T x -MPCSN system indicated that the temperature corresponding to T 5% of TPU nanocomposites by adding 2% Ti 3 C 2 T x or 2% MPCSN decreased to 269.1 and 311.5 °C, respectively. Simultaneously, a well dispersion of the loading of 1.0 mass% Ti 3 C 2 T x -MPCSN was found in TPU matrix. Accordingly, the thermal stability of TPU can be found to be substantially improved in the thermogravimetric analysis, which was embodied in the mass loss of TPU/Ti 3 C 2 T x -MPCSN-1.0 reached up to 8.47 mass%. Moreover, the cone calorimeter tests revealed that the peak of heat release rate, the total heat release, carbon monoxide production rate and total carbon monoxide yield of the TPU nanocomposite were prominently diminished by 16.1%, 37.5%, 18.8% and 37.6%, respectively. This provides clues to the flame-retardant mechanism of TPU nanocomposites: The modified Ti 3 C 2 T x is combined with MPCSN through a cross-linked network grown on the surface of the carbon layer, which not only prevents the leakage of combustible gas, but also catalyzes the formation of the carbon layer. This work demonstrates a novel design for improved Ti 3 C 2 T x with supramolecularly assembled networks to reduce potential fire risk in practical TPU applications, applying to applications in polymer materials.
doi_str_mv 10.1007/s10973-023-12366-z
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2870724607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A767318924</galeid><sourcerecordid>A767318924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-82b16327e3a8e5d14a6e16c84a0479e273f3abdd428b80cccc25a127e1df8883</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhk1poGnSP9CToacenOrDK8nHEPoRSCkkOfQmZuXxRqktuRqZZPfXV6kLJZdIBw3ieYYZ3qp6z9kZZ0x_Is46LRsmZMOFVKo5vKqO-caYRnRCvS61LLXiG_amekt0zxjrOsaPq-VmmTFNcUS3jJBqIMJpO-7rgPkhpl9UD0tw2ccAoz9gX3__iQHrHB8g9fXgEzYJyVOGkOt899RqHoGyd_Ucx_2SMN9BEQKE6OI0R_IZ6bQ6GmAkfPfvPaluv3y-vfjWXP34enlxftU42YncGLHlSgqNEgxuet6CQq6caYG1ukOh5SBh2_etMFvDXDliA7zwvB-MMfKk-rC2nVP8vSBlex-XVDYhK4xmWrSK6UKdrdQORrQ-DDEncOX2OHkXAw6-_J9rpSU3nWiL8PGZUJiMj3kHC5G9vLl-zoqVdSkSJRzsnPwEaW85s0_R2TU6W6Kzf6OzhyLJVaIChx2m_3O_YP0BgfWftw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870724607</pqid></control><display><type>article</type><title>Supermolecular assembly networks functionalized MXene toward fire-resistant thermoplastic polyurethane nanocomposites</title><source>Springer Link</source><creator>Nie, Chenxin ; Yang, Jian ; Deng, Guojun ; Feng, Yuezhan ; Shi, Yongqian</creator><creatorcontrib>Nie, Chenxin ; Yang, Jian ; Deng, Guojun ; Feng, Yuezhan ; Shi, Yongqian</creatorcontrib><description>A new N–P–Cu containing supermolecular assembly network (MPCSN) was fabricated with titanium carbide (Ti 3 C 2 T x ) nanosheets through intermolecular forces, and then, the flame-retardant thermoplastic polyurethane (TPU) nanocomposites were synthesized by melt blending. The obtained results of the TPU/Ti 3 C 2 T x -MPCSN system indicated that the temperature corresponding to T 5% of TPU nanocomposites by adding 2% Ti 3 C 2 T x or 2% MPCSN decreased to 269.1 and 311.5 °C, respectively. Simultaneously, a well dispersion of the loading of 1.0 mass% Ti 3 C 2 T x -MPCSN was found in TPU matrix. Accordingly, the thermal stability of TPU can be found to be substantially improved in the thermogravimetric analysis, which was embodied in the mass loss of TPU/Ti 3 C 2 T x -MPCSN-1.0 reached up to 8.47 mass%. Moreover, the cone calorimeter tests revealed that the peak of heat release rate, the total heat release, carbon monoxide production rate and total carbon monoxide yield of the TPU nanocomposite were prominently diminished by 16.1%, 37.5%, 18.8% and 37.6%, respectively. This provides clues to the flame-retardant mechanism of TPU nanocomposites: The modified Ti 3 C 2 T x is combined with MPCSN through a cross-linked network grown on the surface of the carbon layer, which not only prevents the leakage of combustible gas, but also catalyzes the formation of the carbon layer. This work demonstrates a novel design for improved Ti 3 C 2 T x with supramolecularly assembled networks to reduce potential fire risk in practical TPU applications, applying to applications in polymer materials.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-023-12366-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analytical Chemistry ; Assembly ; Carbon monoxide ; Chemistry ; Chemistry and Materials Science ; Cone calorimeters ; Enthalpy ; Fire resistance ; Fireproofing agents ; Flame retardants ; Heat release rate ; Inorganic Chemistry ; Intermolecular forces ; Measurement Science and Instrumentation ; Melt blending ; MXenes ; Nanocomposites ; Physical Chemistry ; Polymer Sciences ; Polyurethane resins ; Polyurethanes ; Thermal stability ; Thermogravimetric analysis ; Titanium carbide ; Urethane thermoplastic elastomers</subject><ispartof>Journal of thermal analysis and calorimetry, 2023-10, Vol.148 (19), p.10051-10063</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-82b16327e3a8e5d14a6e16c84a0479e273f3abdd428b80cccc25a127e1df8883</citedby><cites>FETCH-LOGICAL-c392t-82b16327e3a8e5d14a6e16c84a0479e273f3abdd428b80cccc25a127e1df8883</cites><orcidid>0000-0002-5646-4627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nie, Chenxin</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Deng, Guojun</creatorcontrib><creatorcontrib>Feng, Yuezhan</creatorcontrib><creatorcontrib>Shi, Yongqian</creatorcontrib><title>Supermolecular assembly networks functionalized MXene toward fire-resistant thermoplastic polyurethane nanocomposites</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>A new N–P–Cu containing supermolecular assembly network (MPCSN) was fabricated with titanium carbide (Ti 3 C 2 T x ) nanosheets through intermolecular forces, and then, the flame-retardant thermoplastic polyurethane (TPU) nanocomposites were synthesized by melt blending. The obtained results of the TPU/Ti 3 C 2 T x -MPCSN system indicated that the temperature corresponding to T 5% of TPU nanocomposites by adding 2% Ti 3 C 2 T x or 2% MPCSN decreased to 269.1 and 311.5 °C, respectively. Simultaneously, a well dispersion of the loading of 1.0 mass% Ti 3 C 2 T x -MPCSN was found in TPU matrix. Accordingly, the thermal stability of TPU can be found to be substantially improved in the thermogravimetric analysis, which was embodied in the mass loss of TPU/Ti 3 C 2 T x -MPCSN-1.0 reached up to 8.47 mass%. Moreover, the cone calorimeter tests revealed that the peak of heat release rate, the total heat release, carbon monoxide production rate and total carbon monoxide yield of the TPU nanocomposite were prominently diminished by 16.1%, 37.5%, 18.8% and 37.6%, respectively. This provides clues to the flame-retardant mechanism of TPU nanocomposites: The modified Ti 3 C 2 T x is combined with MPCSN through a cross-linked network grown on the surface of the carbon layer, which not only prevents the leakage of combustible gas, but also catalyzes the formation of the carbon layer. This work demonstrates a novel design for improved Ti 3 C 2 T x with supramolecularly assembled networks to reduce potential fire risk in practical TPU applications, applying to applications in polymer materials.</description><subject>Analytical Chemistry</subject><subject>Assembly</subject><subject>Carbon monoxide</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cone calorimeters</subject><subject>Enthalpy</subject><subject>Fire resistance</subject><subject>Fireproofing agents</subject><subject>Flame retardants</subject><subject>Heat release rate</subject><subject>Inorganic Chemistry</subject><subject>Intermolecular forces</subject><subject>Measurement Science and Instrumentation</subject><subject>Melt blending</subject><subject>MXenes</subject><subject>Nanocomposites</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Polyurethane resins</subject><subject>Polyurethanes</subject><subject>Thermal stability</subject><subject>Thermogravimetric analysis</subject><subject>Titanium carbide</subject><subject>Urethane thermoplastic elastomers</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhk1poGnSP9CToacenOrDK8nHEPoRSCkkOfQmZuXxRqktuRqZZPfXV6kLJZdIBw3ieYYZ3qp6z9kZZ0x_Is46LRsmZMOFVKo5vKqO-caYRnRCvS61LLXiG_amekt0zxjrOsaPq-VmmTFNcUS3jJBqIMJpO-7rgPkhpl9UD0tw2ccAoz9gX3__iQHrHB8g9fXgEzYJyVOGkOt899RqHoGyd_Ucx_2SMN9BEQKE6OI0R_IZ6bQ6GmAkfPfvPaluv3y-vfjWXP34enlxftU42YncGLHlSgqNEgxuet6CQq6caYG1ukOh5SBh2_etMFvDXDliA7zwvB-MMfKk-rC2nVP8vSBlex-XVDYhK4xmWrSK6UKdrdQORrQ-DDEncOX2OHkXAw6-_J9rpSU3nWiL8PGZUJiMj3kHC5G9vLl-zoqVdSkSJRzsnPwEaW85s0_R2TU6W6Kzf6OzhyLJVaIChx2m_3O_YP0BgfWftw</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Nie, Chenxin</creator><creator>Yang, Jian</creator><creator>Deng, Guojun</creator><creator>Feng, Yuezhan</creator><creator>Shi, Yongqian</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0002-5646-4627</orcidid></search><sort><creationdate>20231001</creationdate><title>Supermolecular assembly networks functionalized MXene toward fire-resistant thermoplastic polyurethane nanocomposites</title><author>Nie, Chenxin ; Yang, Jian ; Deng, Guojun ; Feng, Yuezhan ; Shi, Yongqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-82b16327e3a8e5d14a6e16c84a0479e273f3abdd428b80cccc25a127e1df8883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical Chemistry</topic><topic>Assembly</topic><topic>Carbon monoxide</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cone calorimeters</topic><topic>Enthalpy</topic><topic>Fire resistance</topic><topic>Fireproofing agents</topic><topic>Flame retardants</topic><topic>Heat release rate</topic><topic>Inorganic Chemistry</topic><topic>Intermolecular forces</topic><topic>Measurement Science and Instrumentation</topic><topic>Melt blending</topic><topic>MXenes</topic><topic>Nanocomposites</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Polyurethane resins</topic><topic>Polyurethanes</topic><topic>Thermal stability</topic><topic>Thermogravimetric analysis</topic><topic>Titanium carbide</topic><topic>Urethane thermoplastic elastomers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Chenxin</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Deng, Guojun</creatorcontrib><creatorcontrib>Feng, Yuezhan</creatorcontrib><creatorcontrib>Shi, Yongqian</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Chenxin</au><au>Yang, Jian</au><au>Deng, Guojun</au><au>Feng, Yuezhan</au><au>Shi, Yongqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supermolecular assembly networks functionalized MXene toward fire-resistant thermoplastic polyurethane nanocomposites</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>148</volume><issue>19</issue><spage>10051</spage><epage>10063</epage><pages>10051-10063</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>A new N–P–Cu containing supermolecular assembly network (MPCSN) was fabricated with titanium carbide (Ti 3 C 2 T x ) nanosheets through intermolecular forces, and then, the flame-retardant thermoplastic polyurethane (TPU) nanocomposites were synthesized by melt blending. The obtained results of the TPU/Ti 3 C 2 T x -MPCSN system indicated that the temperature corresponding to T 5% of TPU nanocomposites by adding 2% Ti 3 C 2 T x or 2% MPCSN decreased to 269.1 and 311.5 °C, respectively. Simultaneously, a well dispersion of the loading of 1.0 mass% Ti 3 C 2 T x -MPCSN was found in TPU matrix. Accordingly, the thermal stability of TPU can be found to be substantially improved in the thermogravimetric analysis, which was embodied in the mass loss of TPU/Ti 3 C 2 T x -MPCSN-1.0 reached up to 8.47 mass%. Moreover, the cone calorimeter tests revealed that the peak of heat release rate, the total heat release, carbon monoxide production rate and total carbon monoxide yield of the TPU nanocomposite were prominently diminished by 16.1%, 37.5%, 18.8% and 37.6%, respectively. This provides clues to the flame-retardant mechanism of TPU nanocomposites: The modified Ti 3 C 2 T x is combined with MPCSN through a cross-linked network grown on the surface of the carbon layer, which not only prevents the leakage of combustible gas, but also catalyzes the formation of the carbon layer. This work demonstrates a novel design for improved Ti 3 C 2 T x with supramolecularly assembled networks to reduce potential fire risk in practical TPU applications, applying to applications in polymer materials.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-023-12366-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5646-4627</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2023-10, Vol.148 (19), p.10051-10063
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2870724607
source Springer Link
subjects Analytical Chemistry
Assembly
Carbon monoxide
Chemistry
Chemistry and Materials Science
Cone calorimeters
Enthalpy
Fire resistance
Fireproofing agents
Flame retardants
Heat release rate
Inorganic Chemistry
Intermolecular forces
Measurement Science and Instrumentation
Melt blending
MXenes
Nanocomposites
Physical Chemistry
Polymer Sciences
Polyurethane resins
Polyurethanes
Thermal stability
Thermogravimetric analysis
Titanium carbide
Urethane thermoplastic elastomers
title Supermolecular assembly networks functionalized MXene toward fire-resistant thermoplastic polyurethane nanocomposites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supermolecular%20assembly%20networks%20functionalized%20MXene%20toward%20fire-resistant%20thermoplastic%20polyurethane%20nanocomposites&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Nie,%20Chenxin&rft.date=2023-10-01&rft.volume=148&rft.issue=19&rft.spage=10051&rft.epage=10063&rft.pages=10051-10063&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-023-12366-z&rft_dat=%3Cgale_proqu%3EA767318924%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-82b16327e3a8e5d14a6e16c84a0479e273f3abdd428b80cccc25a127e1df8883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2870724607&rft_id=info:pmid/&rft_galeid=A767318924&rfr_iscdi=true