Loading…
New synthetic approach to pyrazolopyrazine derivatives from 2,2‐dichlorovinylacetophenones
New efficient synthetic methods in pyrazoline and pyrazolopyrazine chemistry have been developed starting from 2,2‐dichlorovinylacetophenones 1, which were sequentially transformed into 3‐aryl‐5‐dichloromethyl‐1‐(2‐hydroxiethyl)‐2‐pyrazolines 2, 3‐aryl‐5‐dichloromethyl‐1‐(2‐O‐tosylhydroxyethyl)‐2‐py...
Saved in:
Published in: | Journal of heterocyclic chemistry 2023-10, Vol.60 (10), p.1714-1726 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | New efficient synthetic methods in pyrazoline and pyrazolopyrazine chemistry have been developed starting from 2,2‐dichlorovinylacetophenones 1, which were sequentially transformed into 3‐aryl‐5‐dichloromethyl‐1‐(2‐hydroxiethyl)‐2‐pyrazolines 2, 3‐aryl‐5‐dichloromethyl‐1‐(2‐O‐tosylhydroxyethyl)‐2‐pyrazolines 3, 3‐aryl‐5‐dichloromethyl‐1‐(2‐azidoethyl)‐2‐pyrazolines 4, and 3‐aryl‐5‐dichloromethyl‐1‐(2‐aminoethyl)‐2‐pyrazoline hydrochlorides 5, by reaction with 2‐hydroxyethylhydrazine, O‐tosylation, azidation, and catalytic hydrogenation, respectively. Compounds 5 were treated with aqueous sodium hydroxide to provide 2‐aryl‐4,5,6,7‐tetrahydropyrazolo[1,5‐a]pyrazines 6 in one‐step conversions involving cyclization and aromatization. A reaction mechanism has been proposed with the aid of DFT theoretical calculations. Compounds 6 could also be obtained directly in one‐pot reactions of tosylates 3 with ammonium hydroxide followed by the addition of sodium hydroxide. The molecular structure of 2‐(4‐chlorophenyl)‐4,5,6,7‐tetrahydropyrazolo[1,5‐a]pyrazine 6c was determined by X‐ray crystallography. Simplicity, good overall yields and inexpensive starting materials are advantageous features of the improved synthetic procedures reported herein. |
---|---|
ISSN: | 0022-152X 1943-5193 |
DOI: | 10.1002/jhet.4712 |