Loading…

Investigation of the cyclic dynamics in the misfire and partial burn regime in a dilute spark-ignition engine and the role of the residual

This study compares the cycle-to-cycle dynamics in heat release between the misfire and partial burn regime in a highly lean-operated spark-ignition engine. The cyclic dynamics in these two regimes are generally deterministic as misfires and partial burns are often followed by a higher-energy cycle...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering Journal of automobile engineering, 2023-10, Vol.237 (12), p.2840-2856
Main Authors: Stiffler, Rachel, Drallmeier, James
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study compares the cycle-to-cycle dynamics in heat release between the misfire and partial burn regime in a highly lean-operated spark-ignition engine. The cyclic dynamics in these two regimes are generally deterministic as misfires and partial burns are often followed by a higher-energy cycle due to the feed-forward mechanism present in the residual gases. Both short and long-term patterns are investigated by converting the sequences into association rules. Using association rules, as opposed to symbol sequencing, allowed additional insight into the differences in the dynamics when operating in each regime. The influence of the residual amount and residual temperature on the next-cycle dynamics is also investigated using association rules. Results show there exists similar short-term dynamics between the misfire and partial burn regime. Results also indicate the residual amount impacts the next cycle more than the residual gas temperature. Understanding of the differences in the dynamics between the misfire and partial burn regime and how the residual plays a role could impact the control method used.
ISSN:0954-4070
2041-2991
DOI:10.1177/09544070221116700