Loading…
Compositional evolution of igneous garnets: calcic garnets from alkaline rocks of Terskiy Coast (Kola Alkaline Carbonatite Province)
The study examined garnets in lamprophyric and carbonatitic dykes and massif melilitolites from the Devonian Kola Alkaline Carbonatite Province (North-Eastern European craton). We analyzed major and trace element compositions of garnet in 14 well-characterized samples of aillikite, carbonatite, alnö...
Saved in:
Published in: | Mineralogy and petrology 2023-09, Vol.117 (3), p.553-571 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a342t-b89c17885c6ff321b1d69029ab9c938f54c70b29d8c9603302e8724edfc7a9f83 |
---|---|
cites | cdi_FETCH-LOGICAL-a342t-b89c17885c6ff321b1d69029ab9c938f54c70b29d8c9603302e8724edfc7a9f83 |
container_end_page | 571 |
container_issue | 3 |
container_start_page | 553 |
container_title | Mineralogy and petrology |
container_volume | 117 |
creator | Vozniak, Alexey A. Kopylova, Maya G. Nosova, Anna A. Sazonova, Liudmila V. Lebedeva, Natalia M. Stifeeva, Maria V. |
description | The study examined garnets in lamprophyric and carbonatitic dykes and massif melilitolites from the Devonian Kola Alkaline Carbonatite Province (North-Eastern European craton). We analyzed major and trace element compositions of garnet in 14 well-characterized samples of aillikite, carbonatite, alnöites, monchiquites, nephelinite and turjaites and correlated the garnet zoning with the sequence of magmatic crystallization and late deuteric changes. The garnets occur in all textural positions, from early phenocrysts to groundmass phases and deuteric pseudomorphs. The garnets are calcic and classified into five compositional types, 1) high-Zr, 2) high-Ti, 3) medium-Ti, 4) low-Ti, and 5) high-Al. These garnet types combine in distinct ways comprising four zoning patterns (turjaite, nephelinite, monchiquite and carbonate-related) repeated in different rock types. Fractional crystallization controls the observed garnet evolution from high-Ti and high-Zr to garnets poorer in Ti, but richer in Al. Garnets progressing from magmatic to deuteric crystallization evolve from heavy rare earth elements (HREE)-enriched to light rare earth elements (LREE)-enriched and become depleted in trace elements. We interpret high-Zr garnets as antecrysts crystallized from deep alkaline carbonate-rich melts and subsequently destabilized in evolved shallow lamprophyric melts. High-Al garnets have late magmatic or deuteric origin as they replace melilite or carbonate, have low Y/Ho ratio and occur only in a location where carbonatites formed by melt and fluid immiscibility. Significant compositional changes accompanying magmatic crystallization and variations in accessory mineralogy in a single rock type result in a very wide range of major and trace element compositions of garnets and complicate their use as petrogenetic indicators. |
doi_str_mv | 10.1007/s00710-023-00819-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2871486034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2871486034</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-b89c17885c6ff321b1d69029ab9c938f54c70b29d8c9603302e8724edfc7a9f83</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhonRxFr9A55IvOhhdYDtLnhrNn7FJnqoZ8JSaGi3S4Vtk9794VLXxpsXYMLzzGRehC4J3BKA8i6mg0AGlGUAnIgMjtCA5IxnhBT8GA1AsPRdAj9FZzEuIFEjTgboq_KrtY-uc75VDTZb32z2b-wtdvPW-E3EcxVa08V7rFWjnT7U2Aa_wqpZqsa1Bgevl3GvTU2IS7fDlVexw9evvlF4fKAqFeo0qXOdwe_Bb12rzc05OrGqiebi9x6ij8eHafWcTd6eXqrxJFMsp11Wc6FJyflIF9YySmoyKwRQoWqhBeN2lOsSaipmXIsCGANqeElzM7O6VMJyNkRXfd918J8bEzu58JuQ9o6S8pLkPFl5omhP6eBjDMbKdXArFXaSgNynLfu0ZUpb_qQtIUmsl2KC27kJf63_sb4BTjWDyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2871486034</pqid></control><display><type>article</type><title>Compositional evolution of igneous garnets: calcic garnets from alkaline rocks of Terskiy Coast (Kola Alkaline Carbonatite Province)</title><source>Springer Link</source><creator>Vozniak, Alexey A. ; Kopylova, Maya G. ; Nosova, Anna A. ; Sazonova, Liudmila V. ; Lebedeva, Natalia M. ; Stifeeva, Maria V.</creator><creatorcontrib>Vozniak, Alexey A. ; Kopylova, Maya G. ; Nosova, Anna A. ; Sazonova, Liudmila V. ; Lebedeva, Natalia M. ; Stifeeva, Maria V.</creatorcontrib><description>The study examined garnets in lamprophyric and carbonatitic dykes and massif melilitolites from the Devonian Kola Alkaline Carbonatite Province (North-Eastern European craton). We analyzed major and trace element compositions of garnet in 14 well-characterized samples of aillikite, carbonatite, alnöites, monchiquites, nephelinite and turjaites and correlated the garnet zoning with the sequence of magmatic crystallization and late deuteric changes. The garnets occur in all textural positions, from early phenocrysts to groundmass phases and deuteric pseudomorphs. The garnets are calcic and classified into five compositional types, 1) high-Zr, 2) high-Ti, 3) medium-Ti, 4) low-Ti, and 5) high-Al. These garnet types combine in distinct ways comprising four zoning patterns (turjaite, nephelinite, monchiquite and carbonate-related) repeated in different rock types. Fractional crystallization controls the observed garnet evolution from high-Ti and high-Zr to garnets poorer in Ti, but richer in Al. Garnets progressing from magmatic to deuteric crystallization evolve from heavy rare earth elements (HREE)-enriched to light rare earth elements (LREE)-enriched and become depleted in trace elements. We interpret high-Zr garnets as antecrysts crystallized from deep alkaline carbonate-rich melts and subsequently destabilized in evolved shallow lamprophyric melts. High-Al garnets have late magmatic or deuteric origin as they replace melilite or carbonate, have low Y/Ho ratio and occur only in a location where carbonatites formed by melt and fluid immiscibility. Significant compositional changes accompanying magmatic crystallization and variations in accessory mineralogy in a single rock type result in a very wide range of major and trace element compositions of garnets and complicate their use as petrogenetic indicators.</description><identifier>ISSN: 0930-0708</identifier><identifier>EISSN: 1438-1168</identifier><identifier>DOI: 10.1007/s00710-023-00819-0</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Aluminum ; Carbonates ; Composition ; Cratons ; Crystallization ; Devonian ; Earth and Environmental Science ; Earth Sciences ; Evolution ; Fractional crystallization ; Garnet ; Garnets ; Geochemistry ; Immiscibility ; Inorganic Chemistry ; Massifs ; Melts (crystal growth) ; Mineralogy ; Miscibility ; Original Paper ; Rare earth elements ; Rock ; Rocks ; Titanium ; Trace elements ; Zirconium ; Zoning</subject><ispartof>Mineralogy and petrology, 2023-09, Vol.117 (3), p.553-571</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-b89c17885c6ff321b1d69029ab9c938f54c70b29d8c9603302e8724edfc7a9f83</citedby><cites>FETCH-LOGICAL-a342t-b89c17885c6ff321b1d69029ab9c938f54c70b29d8c9603302e8724edfc7a9f83</cites><orcidid>0000-0003-2798-2190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Vozniak, Alexey A.</creatorcontrib><creatorcontrib>Kopylova, Maya G.</creatorcontrib><creatorcontrib>Nosova, Anna A.</creatorcontrib><creatorcontrib>Sazonova, Liudmila V.</creatorcontrib><creatorcontrib>Lebedeva, Natalia M.</creatorcontrib><creatorcontrib>Stifeeva, Maria V.</creatorcontrib><title>Compositional evolution of igneous garnets: calcic garnets from alkaline rocks of Terskiy Coast (Kola Alkaline Carbonatite Province)</title><title>Mineralogy and petrology</title><addtitle>Miner Petrol</addtitle><description>The study examined garnets in lamprophyric and carbonatitic dykes and massif melilitolites from the Devonian Kola Alkaline Carbonatite Province (North-Eastern European craton). We analyzed major and trace element compositions of garnet in 14 well-characterized samples of aillikite, carbonatite, alnöites, monchiquites, nephelinite and turjaites and correlated the garnet zoning with the sequence of magmatic crystallization and late deuteric changes. The garnets occur in all textural positions, from early phenocrysts to groundmass phases and deuteric pseudomorphs. The garnets are calcic and classified into five compositional types, 1) high-Zr, 2) high-Ti, 3) medium-Ti, 4) low-Ti, and 5) high-Al. These garnet types combine in distinct ways comprising four zoning patterns (turjaite, nephelinite, monchiquite and carbonate-related) repeated in different rock types. Fractional crystallization controls the observed garnet evolution from high-Ti and high-Zr to garnets poorer in Ti, but richer in Al. Garnets progressing from magmatic to deuteric crystallization evolve from heavy rare earth elements (HREE)-enriched to light rare earth elements (LREE)-enriched and become depleted in trace elements. We interpret high-Zr garnets as antecrysts crystallized from deep alkaline carbonate-rich melts and subsequently destabilized in evolved shallow lamprophyric melts. High-Al garnets have late magmatic or deuteric origin as they replace melilite or carbonate, have low Y/Ho ratio and occur only in a location where carbonatites formed by melt and fluid immiscibility. Significant compositional changes accompanying magmatic crystallization and variations in accessory mineralogy in a single rock type result in a very wide range of major and trace element compositions of garnets and complicate their use as petrogenetic indicators.</description><subject>Aluminum</subject><subject>Carbonates</subject><subject>Composition</subject><subject>Cratons</subject><subject>Crystallization</subject><subject>Devonian</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Evolution</subject><subject>Fractional crystallization</subject><subject>Garnet</subject><subject>Garnets</subject><subject>Geochemistry</subject><subject>Immiscibility</subject><subject>Inorganic Chemistry</subject><subject>Massifs</subject><subject>Melts (crystal growth)</subject><subject>Mineralogy</subject><subject>Miscibility</subject><subject>Original Paper</subject><subject>Rare earth elements</subject><subject>Rock</subject><subject>Rocks</subject><subject>Titanium</subject><subject>Trace elements</subject><subject>Zirconium</subject><subject>Zoning</subject><issn>0930-0708</issn><issn>1438-1168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAyEQhonRxFr9A55IvOhhdYDtLnhrNn7FJnqoZ8JSaGi3S4Vtk9794VLXxpsXYMLzzGRehC4J3BKA8i6mg0AGlGUAnIgMjtCA5IxnhBT8GA1AsPRdAj9FZzEuIFEjTgboq_KrtY-uc75VDTZb32z2b-wtdvPW-E3EcxVa08V7rFWjnT7U2Aa_wqpZqsa1Bgevl3GvTU2IS7fDlVexw9evvlF4fKAqFeo0qXOdwe_Bb12rzc05OrGqiebi9x6ij8eHafWcTd6eXqrxJFMsp11Wc6FJyflIF9YySmoyKwRQoWqhBeN2lOsSaipmXIsCGANqeElzM7O6VMJyNkRXfd918J8bEzu58JuQ9o6S8pLkPFl5omhP6eBjDMbKdXArFXaSgNynLfu0ZUpb_qQtIUmsl2KC27kJf63_sb4BTjWDyQ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Vozniak, Alexey A.</creator><creator>Kopylova, Maya G.</creator><creator>Nosova, Anna A.</creator><creator>Sazonova, Liudmila V.</creator><creator>Lebedeva, Natalia M.</creator><creator>Stifeeva, Maria V.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2798-2190</orcidid></search><sort><creationdate>20230901</creationdate><title>Compositional evolution of igneous garnets: calcic garnets from alkaline rocks of Terskiy Coast (Kola Alkaline Carbonatite Province)</title><author>Vozniak, Alexey A. ; Kopylova, Maya G. ; Nosova, Anna A. ; Sazonova, Liudmila V. ; Lebedeva, Natalia M. ; Stifeeva, Maria V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-b89c17885c6ff321b1d69029ab9c938f54c70b29d8c9603302e8724edfc7a9f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Carbonates</topic><topic>Composition</topic><topic>Cratons</topic><topic>Crystallization</topic><topic>Devonian</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Evolution</topic><topic>Fractional crystallization</topic><topic>Garnet</topic><topic>Garnets</topic><topic>Geochemistry</topic><topic>Immiscibility</topic><topic>Inorganic Chemistry</topic><topic>Massifs</topic><topic>Melts (crystal growth)</topic><topic>Mineralogy</topic><topic>Miscibility</topic><topic>Original Paper</topic><topic>Rare earth elements</topic><topic>Rock</topic><topic>Rocks</topic><topic>Titanium</topic><topic>Trace elements</topic><topic>Zirconium</topic><topic>Zoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vozniak, Alexey A.</creatorcontrib><creatorcontrib>Kopylova, Maya G.</creatorcontrib><creatorcontrib>Nosova, Anna A.</creatorcontrib><creatorcontrib>Sazonova, Liudmila V.</creatorcontrib><creatorcontrib>Lebedeva, Natalia M.</creatorcontrib><creatorcontrib>Stifeeva, Maria V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vozniak, Alexey A.</au><au>Kopylova, Maya G.</au><au>Nosova, Anna A.</au><au>Sazonova, Liudmila V.</au><au>Lebedeva, Natalia M.</au><au>Stifeeva, Maria V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compositional evolution of igneous garnets: calcic garnets from alkaline rocks of Terskiy Coast (Kola Alkaline Carbonatite Province)</atitle><jtitle>Mineralogy and petrology</jtitle><stitle>Miner Petrol</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>117</volume><issue>3</issue><spage>553</spage><epage>571</epage><pages>553-571</pages><issn>0930-0708</issn><eissn>1438-1168</eissn><abstract>The study examined garnets in lamprophyric and carbonatitic dykes and massif melilitolites from the Devonian Kola Alkaline Carbonatite Province (North-Eastern European craton). We analyzed major and trace element compositions of garnet in 14 well-characterized samples of aillikite, carbonatite, alnöites, monchiquites, nephelinite and turjaites and correlated the garnet zoning with the sequence of magmatic crystallization and late deuteric changes. The garnets occur in all textural positions, from early phenocrysts to groundmass phases and deuteric pseudomorphs. The garnets are calcic and classified into five compositional types, 1) high-Zr, 2) high-Ti, 3) medium-Ti, 4) low-Ti, and 5) high-Al. These garnet types combine in distinct ways comprising four zoning patterns (turjaite, nephelinite, monchiquite and carbonate-related) repeated in different rock types. Fractional crystallization controls the observed garnet evolution from high-Ti and high-Zr to garnets poorer in Ti, but richer in Al. Garnets progressing from magmatic to deuteric crystallization evolve from heavy rare earth elements (HREE)-enriched to light rare earth elements (LREE)-enriched and become depleted in trace elements. We interpret high-Zr garnets as antecrysts crystallized from deep alkaline carbonate-rich melts and subsequently destabilized in evolved shallow lamprophyric melts. High-Al garnets have late magmatic or deuteric origin as they replace melilite or carbonate, have low Y/Ho ratio and occur only in a location where carbonatites formed by melt and fluid immiscibility. Significant compositional changes accompanying magmatic crystallization and variations in accessory mineralogy in a single rock type result in a very wide range of major and trace element compositions of garnets and complicate their use as petrogenetic indicators.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00710-023-00819-0</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2798-2190</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-0708 |
ispartof | Mineralogy and petrology, 2023-09, Vol.117 (3), p.553-571 |
issn | 0930-0708 1438-1168 |
language | eng |
recordid | cdi_proquest_journals_2871486034 |
source | Springer Link |
subjects | Aluminum Carbonates Composition Cratons Crystallization Devonian Earth and Environmental Science Earth Sciences Evolution Fractional crystallization Garnet Garnets Geochemistry Immiscibility Inorganic Chemistry Massifs Melts (crystal growth) Mineralogy Miscibility Original Paper Rare earth elements Rock Rocks Titanium Trace elements Zirconium Zoning |
title | Compositional evolution of igneous garnets: calcic garnets from alkaline rocks of Terskiy Coast (Kola Alkaline Carbonatite Province) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compositional%20evolution%20of%20igneous%20garnets:%20calcic%20garnets%20from%20alkaline%20rocks%20of%20Terskiy%20Coast%20(Kola%20Alkaline%20Carbonatite%20Province)&rft.jtitle=Mineralogy%20and%20petrology&rft.au=Vozniak,%20Alexey%20A.&rft.date=2023-09-01&rft.volume=117&rft.issue=3&rft.spage=553&rft.epage=571&rft.pages=553-571&rft.issn=0930-0708&rft.eissn=1438-1168&rft_id=info:doi/10.1007/s00710-023-00819-0&rft_dat=%3Cproquest_cross%3E2871486034%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a342t-b89c17885c6ff321b1d69029ab9c938f54c70b29d8c9603302e8724edfc7a9f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2871486034&rft_id=info:pmid/&rfr_iscdi=true |