Loading…
Quantum Nuclear Delocalization and its Rovibrational Fingerprints
Quantum mechanics dictates that nuclei must undergo some delocalization. In this work, emergence of quantum nuclear delocalization and its rovibrational fingerprints are discussed for the case of the van der Waals complex . The equilibrium structure of is planar and T‐shaped, one He atom solvating t...
Saved in:
Published in: | Angewandte Chemie 2023-10, Vol.135 (41) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1074-a91c8d51b847572305c70046e5d34e6d686d789af90c4d92054ae73ab5185d5b3 |
container_end_page | |
container_issue | 41 |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | 135 |
creator | Simkó, Irén Schran, Christoph Brieuc, Fabien Fábri, Csaba Asvany, Oskar Schlemmer, Stephan Marx, Dominik Császár, Attila G. |
description | Quantum mechanics dictates that nuclei must undergo some delocalization. In this work, emergence of quantum nuclear delocalization and its rovibrational fingerprints are discussed for the case of the van der Waals complex
. The equilibrium structure of
is planar and T‐shaped, one He atom solvating the quasi‐linear He−H
+
−He core. The dynamical structure of
, in all of its bound states, is fundamentally different. As revealed by spatial distribution functions and nuclear densities, during the vibrations of the molecule the solvating He is not restricted to be in the plane defined by the instantaneously bent
chomophore, but freely orbits the central proton, forming a three‐dimensional torus around the
chromophore. This quantum delocalization is observed for all vibrational states, the type of vibrational excitation being reflected in the topology of the nodal surfaces in the nuclear densities, showing, for example, that intramolecular bending involves excitation along the circumference of the torus. |
doi_str_mv | 10.1002/ange.202306744 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2871555000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2871555000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1074-a91c8d51b847572305c70046e5d34e6d686d789af90c4d92054ae73ab5185d5b3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK5ePRc8t06-mvS4rK4Ki6LoOUyTVLp02zVpBf31Zl3xNDC8vPPMQ8glhYICsGvs333BgHEolRBHZEYlozlXUh2TGYAQuWaiOiVnMW4AoGSqmpHF84T9OG2zx8l2HkN247vBYtd-49gOfYa9y9oxZi_DZ1uH3x122apNt8IutP0Yz8lJg130F39zTt5Wt6_L-3z9dPewXKxzS0GJHCtqtZO01iIRJUhpVYIqvXRc-NKVunRKV9hUYIWrGEiBXnGsJdXSyZrPydWhdxeGj8nH0WyGKSSaaJhWVEqZnkqp4pCyYYgx-MYkyi2GL0PB7DWZvSbzr4n_AGkOWig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2871555000</pqid></control><display><type>article</type><title>Quantum Nuclear Delocalization and its Rovibrational Fingerprints</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Simkó, Irén ; Schran, Christoph ; Brieuc, Fabien ; Fábri, Csaba ; Asvany, Oskar ; Schlemmer, Stephan ; Marx, Dominik ; Császár, Attila G.</creator><creatorcontrib>Simkó, Irén ; Schran, Christoph ; Brieuc, Fabien ; Fábri, Csaba ; Asvany, Oskar ; Schlemmer, Stephan ; Marx, Dominik ; Császár, Attila G.</creatorcontrib><description>Quantum mechanics dictates that nuclei must undergo some delocalization. In this work, emergence of quantum nuclear delocalization and its rovibrational fingerprints are discussed for the case of the van der Waals complex
. The equilibrium structure of
is planar and T‐shaped, one He atom solvating the quasi‐linear He−H
+
−He core. The dynamical structure of
, in all of its bound states, is fundamentally different. As revealed by spatial distribution functions and nuclear densities, during the vibrations of the molecule the solvating He is not restricted to be in the plane defined by the instantaneously bent
chomophore, but freely orbits the central proton, forming a three‐dimensional torus around the
chromophore. This quantum delocalization is observed for all vibrational states, the type of vibrational excitation being reflected in the topology of the nodal surfaces in the nuclear densities, showing, for example, that intramolecular bending involves excitation along the circumference of the torus.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202306744</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chemistry ; Chromophores ; Distribution functions ; Excitation ; Fingerprints ; Quantum mechanics ; Spatial distribution ; Topology ; Toruses ; Vibrational states ; Vibrations</subject><ispartof>Angewandte Chemie, 2023-10, Vol.135 (41)</ispartof><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1074-a91c8d51b847572305c70046e5d34e6d686d789af90c4d92054ae73ab5185d5b3</cites><orcidid>0000-0002-1421-7281 ; 0000-0001-9746-1548 ; 0000-0003-2995-0803 ; 0000-0001-5640-191X ; 0000-0002-9691-9227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Simkó, Irén</creatorcontrib><creatorcontrib>Schran, Christoph</creatorcontrib><creatorcontrib>Brieuc, Fabien</creatorcontrib><creatorcontrib>Fábri, Csaba</creatorcontrib><creatorcontrib>Asvany, Oskar</creatorcontrib><creatorcontrib>Schlemmer, Stephan</creatorcontrib><creatorcontrib>Marx, Dominik</creatorcontrib><creatorcontrib>Császár, Attila G.</creatorcontrib><title>Quantum Nuclear Delocalization and its Rovibrational Fingerprints</title><title>Angewandte Chemie</title><description>Quantum mechanics dictates that nuclei must undergo some delocalization. In this work, emergence of quantum nuclear delocalization and its rovibrational fingerprints are discussed for the case of the van der Waals complex
. The equilibrium structure of
is planar and T‐shaped, one He atom solvating the quasi‐linear He−H
+
−He core. The dynamical structure of
, in all of its bound states, is fundamentally different. As revealed by spatial distribution functions and nuclear densities, during the vibrations of the molecule the solvating He is not restricted to be in the plane defined by the instantaneously bent
chomophore, but freely orbits the central proton, forming a three‐dimensional torus around the
chromophore. This quantum delocalization is observed for all vibrational states, the type of vibrational excitation being reflected in the topology of the nodal surfaces in the nuclear densities, showing, for example, that intramolecular bending involves excitation along the circumference of the torus.</description><subject>Chemistry</subject><subject>Chromophores</subject><subject>Distribution functions</subject><subject>Excitation</subject><subject>Fingerprints</subject><subject>Quantum mechanics</subject><subject>Spatial distribution</subject><subject>Topology</subject><subject>Toruses</subject><subject>Vibrational states</subject><subject>Vibrations</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouK5ePRc8t06-mvS4rK4Ki6LoOUyTVLp02zVpBf31Zl3xNDC8vPPMQ8glhYICsGvs333BgHEolRBHZEYlozlXUh2TGYAQuWaiOiVnMW4AoGSqmpHF84T9OG2zx8l2HkN247vBYtd-49gOfYa9y9oxZi_DZ1uH3x122apNt8IutP0Yz8lJg130F39zTt5Wt6_L-3z9dPewXKxzS0GJHCtqtZO01iIRJUhpVYIqvXRc-NKVunRKV9hUYIWrGEiBXnGsJdXSyZrPydWhdxeGj8nH0WyGKSSaaJhWVEqZnkqp4pCyYYgx-MYkyi2GL0PB7DWZvSbzr4n_AGkOWig</recordid><startdate>20231009</startdate><enddate>20231009</enddate><creator>Simkó, Irén</creator><creator>Schran, Christoph</creator><creator>Brieuc, Fabien</creator><creator>Fábri, Csaba</creator><creator>Asvany, Oskar</creator><creator>Schlemmer, Stephan</creator><creator>Marx, Dominik</creator><creator>Császár, Attila G.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1421-7281</orcidid><orcidid>https://orcid.org/0000-0001-9746-1548</orcidid><orcidid>https://orcid.org/0000-0003-2995-0803</orcidid><orcidid>https://orcid.org/0000-0001-5640-191X</orcidid><orcidid>https://orcid.org/0000-0002-9691-9227</orcidid></search><sort><creationdate>20231009</creationdate><title>Quantum Nuclear Delocalization and its Rovibrational Fingerprints</title><author>Simkó, Irén ; Schran, Christoph ; Brieuc, Fabien ; Fábri, Csaba ; Asvany, Oskar ; Schlemmer, Stephan ; Marx, Dominik ; Császár, Attila G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1074-a91c8d51b847572305c70046e5d34e6d686d789af90c4d92054ae73ab5185d5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><topic>Chromophores</topic><topic>Distribution functions</topic><topic>Excitation</topic><topic>Fingerprints</topic><topic>Quantum mechanics</topic><topic>Spatial distribution</topic><topic>Topology</topic><topic>Toruses</topic><topic>Vibrational states</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simkó, Irén</creatorcontrib><creatorcontrib>Schran, Christoph</creatorcontrib><creatorcontrib>Brieuc, Fabien</creatorcontrib><creatorcontrib>Fábri, Csaba</creatorcontrib><creatorcontrib>Asvany, Oskar</creatorcontrib><creatorcontrib>Schlemmer, Stephan</creatorcontrib><creatorcontrib>Marx, Dominik</creatorcontrib><creatorcontrib>Császár, Attila G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simkó, Irén</au><au>Schran, Christoph</au><au>Brieuc, Fabien</au><au>Fábri, Csaba</au><au>Asvany, Oskar</au><au>Schlemmer, Stephan</au><au>Marx, Dominik</au><au>Császár, Attila G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Nuclear Delocalization and its Rovibrational Fingerprints</atitle><jtitle>Angewandte Chemie</jtitle><date>2023-10-09</date><risdate>2023</risdate><volume>135</volume><issue>41</issue><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Quantum mechanics dictates that nuclei must undergo some delocalization. In this work, emergence of quantum nuclear delocalization and its rovibrational fingerprints are discussed for the case of the van der Waals complex
. The equilibrium structure of
is planar and T‐shaped, one He atom solvating the quasi‐linear He−H
+
−He core. The dynamical structure of
, in all of its bound states, is fundamentally different. As revealed by spatial distribution functions and nuclear densities, during the vibrations of the molecule the solvating He is not restricted to be in the plane defined by the instantaneously bent
chomophore, but freely orbits the central proton, forming a three‐dimensional torus around the
chromophore. This quantum delocalization is observed for all vibrational states, the type of vibrational excitation being reflected in the topology of the nodal surfaces in the nuclear densities, showing, for example, that intramolecular bending involves excitation along the circumference of the torus.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202306744</doi><orcidid>https://orcid.org/0000-0002-1421-7281</orcidid><orcidid>https://orcid.org/0000-0001-9746-1548</orcidid><orcidid>https://orcid.org/0000-0003-2995-0803</orcidid><orcidid>https://orcid.org/0000-0001-5640-191X</orcidid><orcidid>https://orcid.org/0000-0002-9691-9227</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2023-10, Vol.135 (41) |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2871555000 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Chemistry Chromophores Distribution functions Excitation Fingerprints Quantum mechanics Spatial distribution Topology Toruses Vibrational states Vibrations |
title | Quantum Nuclear Delocalization and its Rovibrational Fingerprints |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A41%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Nuclear%20Delocalization%20and%20its%20Rovibrational%20Fingerprints&rft.jtitle=Angewandte%20Chemie&rft.au=Simk%C3%B3,%20Ir%C3%A9n&rft.date=2023-10-09&rft.volume=135&rft.issue=41&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202306744&rft_dat=%3Cproquest_cross%3E2871555000%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1074-a91c8d51b847572305c70046e5d34e6d686d789af90c4d92054ae73ab5185d5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2871555000&rft_id=info:pmid/&rfr_iscdi=true |