Loading…

Quantum Nuclear Delocalization and its Rovibrational Fingerprints

Quantum mechanics dictates that nuclei must undergo some delocalization. In this work, emergence of quantum nuclear delocalization and its rovibrational fingerprints are discussed for the case of the van der Waals complex . The equilibrium structure of is planar and T‐shaped, one He atom solvating t...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2023-10, Vol.135 (41)
Main Authors: Simkó, Irén, Schran, Christoph, Brieuc, Fabien, Fábri, Csaba, Asvany, Oskar, Schlemmer, Stephan, Marx, Dominik, Császár, Attila G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1074-a91c8d51b847572305c70046e5d34e6d686d789af90c4d92054ae73ab5185d5b3
container_end_page
container_issue 41
container_start_page
container_title Angewandte Chemie
container_volume 135
creator Simkó, Irén
Schran, Christoph
Brieuc, Fabien
Fábri, Csaba
Asvany, Oskar
Schlemmer, Stephan
Marx, Dominik
Császár, Attila G.
description Quantum mechanics dictates that nuclei must undergo some delocalization. In this work, emergence of quantum nuclear delocalization and its rovibrational fingerprints are discussed for the case of the van der Waals complex . The equilibrium structure of is planar and T‐shaped, one He atom solvating the quasi‐linear He−H + −He core. The dynamical structure of , in all of its bound states, is fundamentally different. As revealed by spatial distribution functions and nuclear densities, during the vibrations of the molecule the solvating He is not restricted to be in the plane defined by the instantaneously bent chomophore, but freely orbits the central proton, forming a three‐dimensional torus around the chromophore. This quantum delocalization is observed for all vibrational states, the type of vibrational excitation being reflected in the topology of the nodal surfaces in the nuclear densities, showing, for example, that intramolecular bending involves excitation along the circumference of the torus.
doi_str_mv 10.1002/ange.202306744
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2871555000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2871555000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1074-a91c8d51b847572305c70046e5d34e6d686d789af90c4d92054ae73ab5185d5b3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK5ePRc8t06-mvS4rK4Ki6LoOUyTVLp02zVpBf31Zl3xNDC8vPPMQ8glhYICsGvs333BgHEolRBHZEYlozlXUh2TGYAQuWaiOiVnMW4AoGSqmpHF84T9OG2zx8l2HkN247vBYtd-49gOfYa9y9oxZi_DZ1uH3x122apNt8IutP0Yz8lJg130F39zTt5Wt6_L-3z9dPewXKxzS0GJHCtqtZO01iIRJUhpVYIqvXRc-NKVunRKV9hUYIWrGEiBXnGsJdXSyZrPydWhdxeGj8nH0WyGKSSaaJhWVEqZnkqp4pCyYYgx-MYkyi2GL0PB7DWZvSbzr4n_AGkOWig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2871555000</pqid></control><display><type>article</type><title>Quantum Nuclear Delocalization and its Rovibrational Fingerprints</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Simkó, Irén ; Schran, Christoph ; Brieuc, Fabien ; Fábri, Csaba ; Asvany, Oskar ; Schlemmer, Stephan ; Marx, Dominik ; Császár, Attila G.</creator><creatorcontrib>Simkó, Irén ; Schran, Christoph ; Brieuc, Fabien ; Fábri, Csaba ; Asvany, Oskar ; Schlemmer, Stephan ; Marx, Dominik ; Császár, Attila G.</creatorcontrib><description>Quantum mechanics dictates that nuclei must undergo some delocalization. In this work, emergence of quantum nuclear delocalization and its rovibrational fingerprints are discussed for the case of the van der Waals complex . The equilibrium structure of is planar and T‐shaped, one He atom solvating the quasi‐linear He−H + −He core. The dynamical structure of , in all of its bound states, is fundamentally different. As revealed by spatial distribution functions and nuclear densities, during the vibrations of the molecule the solvating He is not restricted to be in the plane defined by the instantaneously bent chomophore, but freely orbits the central proton, forming a three‐dimensional torus around the chromophore. This quantum delocalization is observed for all vibrational states, the type of vibrational excitation being reflected in the topology of the nodal surfaces in the nuclear densities, showing, for example, that intramolecular bending involves excitation along the circumference of the torus.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202306744</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chemistry ; Chromophores ; Distribution functions ; Excitation ; Fingerprints ; Quantum mechanics ; Spatial distribution ; Topology ; Toruses ; Vibrational states ; Vibrations</subject><ispartof>Angewandte Chemie, 2023-10, Vol.135 (41)</ispartof><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1074-a91c8d51b847572305c70046e5d34e6d686d789af90c4d92054ae73ab5185d5b3</cites><orcidid>0000-0002-1421-7281 ; 0000-0001-9746-1548 ; 0000-0003-2995-0803 ; 0000-0001-5640-191X ; 0000-0002-9691-9227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Simkó, Irén</creatorcontrib><creatorcontrib>Schran, Christoph</creatorcontrib><creatorcontrib>Brieuc, Fabien</creatorcontrib><creatorcontrib>Fábri, Csaba</creatorcontrib><creatorcontrib>Asvany, Oskar</creatorcontrib><creatorcontrib>Schlemmer, Stephan</creatorcontrib><creatorcontrib>Marx, Dominik</creatorcontrib><creatorcontrib>Császár, Attila G.</creatorcontrib><title>Quantum Nuclear Delocalization and its Rovibrational Fingerprints</title><title>Angewandte Chemie</title><description>Quantum mechanics dictates that nuclei must undergo some delocalization. In this work, emergence of quantum nuclear delocalization and its rovibrational fingerprints are discussed for the case of the van der Waals complex . The equilibrium structure of is planar and T‐shaped, one He atom solvating the quasi‐linear He−H + −He core. The dynamical structure of , in all of its bound states, is fundamentally different. As revealed by spatial distribution functions and nuclear densities, during the vibrations of the molecule the solvating He is not restricted to be in the plane defined by the instantaneously bent chomophore, but freely orbits the central proton, forming a three‐dimensional torus around the chromophore. This quantum delocalization is observed for all vibrational states, the type of vibrational excitation being reflected in the topology of the nodal surfaces in the nuclear densities, showing, for example, that intramolecular bending involves excitation along the circumference of the torus.</description><subject>Chemistry</subject><subject>Chromophores</subject><subject>Distribution functions</subject><subject>Excitation</subject><subject>Fingerprints</subject><subject>Quantum mechanics</subject><subject>Spatial distribution</subject><subject>Topology</subject><subject>Toruses</subject><subject>Vibrational states</subject><subject>Vibrations</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouK5ePRc8t06-mvS4rK4Ki6LoOUyTVLp02zVpBf31Zl3xNDC8vPPMQ8glhYICsGvs333BgHEolRBHZEYlozlXUh2TGYAQuWaiOiVnMW4AoGSqmpHF84T9OG2zx8l2HkN247vBYtd-49gOfYa9y9oxZi_DZ1uH3x122apNt8IutP0Yz8lJg130F39zTt5Wt6_L-3z9dPewXKxzS0GJHCtqtZO01iIRJUhpVYIqvXRc-NKVunRKV9hUYIWrGEiBXnGsJdXSyZrPydWhdxeGj8nH0WyGKSSaaJhWVEqZnkqp4pCyYYgx-MYkyi2GL0PB7DWZvSbzr4n_AGkOWig</recordid><startdate>20231009</startdate><enddate>20231009</enddate><creator>Simkó, Irén</creator><creator>Schran, Christoph</creator><creator>Brieuc, Fabien</creator><creator>Fábri, Csaba</creator><creator>Asvany, Oskar</creator><creator>Schlemmer, Stephan</creator><creator>Marx, Dominik</creator><creator>Császár, Attila G.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1421-7281</orcidid><orcidid>https://orcid.org/0000-0001-9746-1548</orcidid><orcidid>https://orcid.org/0000-0003-2995-0803</orcidid><orcidid>https://orcid.org/0000-0001-5640-191X</orcidid><orcidid>https://orcid.org/0000-0002-9691-9227</orcidid></search><sort><creationdate>20231009</creationdate><title>Quantum Nuclear Delocalization and its Rovibrational Fingerprints</title><author>Simkó, Irén ; Schran, Christoph ; Brieuc, Fabien ; Fábri, Csaba ; Asvany, Oskar ; Schlemmer, Stephan ; Marx, Dominik ; Császár, Attila G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1074-a91c8d51b847572305c70046e5d34e6d686d789af90c4d92054ae73ab5185d5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><topic>Chromophores</topic><topic>Distribution functions</topic><topic>Excitation</topic><topic>Fingerprints</topic><topic>Quantum mechanics</topic><topic>Spatial distribution</topic><topic>Topology</topic><topic>Toruses</topic><topic>Vibrational states</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simkó, Irén</creatorcontrib><creatorcontrib>Schran, Christoph</creatorcontrib><creatorcontrib>Brieuc, Fabien</creatorcontrib><creatorcontrib>Fábri, Csaba</creatorcontrib><creatorcontrib>Asvany, Oskar</creatorcontrib><creatorcontrib>Schlemmer, Stephan</creatorcontrib><creatorcontrib>Marx, Dominik</creatorcontrib><creatorcontrib>Császár, Attila G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simkó, Irén</au><au>Schran, Christoph</au><au>Brieuc, Fabien</au><au>Fábri, Csaba</au><au>Asvany, Oskar</au><au>Schlemmer, Stephan</au><au>Marx, Dominik</au><au>Császár, Attila G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Nuclear Delocalization and its Rovibrational Fingerprints</atitle><jtitle>Angewandte Chemie</jtitle><date>2023-10-09</date><risdate>2023</risdate><volume>135</volume><issue>41</issue><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Quantum mechanics dictates that nuclei must undergo some delocalization. In this work, emergence of quantum nuclear delocalization and its rovibrational fingerprints are discussed for the case of the van der Waals complex . The equilibrium structure of is planar and T‐shaped, one He atom solvating the quasi‐linear He−H + −He core. The dynamical structure of , in all of its bound states, is fundamentally different. As revealed by spatial distribution functions and nuclear densities, during the vibrations of the molecule the solvating He is not restricted to be in the plane defined by the instantaneously bent chomophore, but freely orbits the central proton, forming a three‐dimensional torus around the chromophore. This quantum delocalization is observed for all vibrational states, the type of vibrational excitation being reflected in the topology of the nodal surfaces in the nuclear densities, showing, for example, that intramolecular bending involves excitation along the circumference of the torus.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202306744</doi><orcidid>https://orcid.org/0000-0002-1421-7281</orcidid><orcidid>https://orcid.org/0000-0001-9746-1548</orcidid><orcidid>https://orcid.org/0000-0003-2995-0803</orcidid><orcidid>https://orcid.org/0000-0001-5640-191X</orcidid><orcidid>https://orcid.org/0000-0002-9691-9227</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2023-10, Vol.135 (41)
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2871555000
source Wiley-Blackwell Read & Publish Collection
subjects Chemistry
Chromophores
Distribution functions
Excitation
Fingerprints
Quantum mechanics
Spatial distribution
Topology
Toruses
Vibrational states
Vibrations
title Quantum Nuclear Delocalization and its Rovibrational Fingerprints
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A41%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Nuclear%20Delocalization%20and%20its%20Rovibrational%20Fingerprints&rft.jtitle=Angewandte%20Chemie&rft.au=Simk%C3%B3,%20Ir%C3%A9n&rft.date=2023-10-09&rft.volume=135&rft.issue=41&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202306744&rft_dat=%3Cproquest_cross%3E2871555000%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1074-a91c8d51b847572305c70046e5d34e6d686d789af90c4d92054ae73ab5185d5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2871555000&rft_id=info:pmid/&rfr_iscdi=true