Loading…

Bifunctional Electrode Design Targeting Co‐Enhanced Kinetics and Mass Transport for Hydrogen and Water Oxidation Reactions

Bifunctional catalysts based on noble metals have achieved practical‐level performances in round‐trip energy conversion systems. However, the required amount of noble metals should be substantially reduced via a new catalyst design that can pursue the synergy of the constituent materials’ intrinsic...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2023-10, Vol.33 (40), p.n/a
Main Authors: Kim, Ye Ji, Lim, Ahyoun, Lee, Gyu Rac, Kim, Minjoon, Kim, Jin Young, Kim, Jong Min, Jung, Yeon Sik, Park, Hyun S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3576-203975300098a2e1421e4d980f25fa190e979e5b656bb03421c8a0dd9c1387d63
cites cdi_FETCH-LOGICAL-c3576-203975300098a2e1421e4d980f25fa190e979e5b656bb03421c8a0dd9c1387d63
container_end_page n/a
container_issue 40
container_start_page
container_title Advanced functional materials
container_volume 33
creator Kim, Ye Ji
Lim, Ahyoun
Lee, Gyu Rac
Kim, Minjoon
Kim, Jin Young
Kim, Jong Min
Jung, Yeon Sik
Park, Hyun S.
description Bifunctional catalysts based on noble metals have achieved practical‐level performances in round‐trip energy conversion systems. However, the required amount of noble metals should be substantially reduced via a new catalyst design that can pursue the synergy of the constituent materials’ intrinsic properties and architectural maneuver over reactant/product transport. In this study, cross‐stacked Ir and Pt nanowires resolved the bottlenecks of two reactions essential for the hydrogen‐based energy system: i) hydrogen spillover phenomenon between Pt and Ir nanowires to expedite the hydrogen oxidation reaction and ii) spacing Ir nanowires sufficiently to enhance the mass transport of the oxygen evolution reaction. Simultaneously accommodating the different strategies within the single catalyst layer, a new horizon to design a bifunctional electrode is proposed with the high performance of polymer electrolyte membrane unitized regenerative fuel cells: 47% of round‐trip efficiency at 0.5 A cm−2 with total noble metal loading < 0.3 mg cm−2. A multiscale woodpile (MsWP) structure of Ir‐Pt bifunctional electrode is suggested to enhance kinetics based on hydrogen spillover and efficient mass transport for improved hydrogen and water oxidation reactions. Beyond the proof of concept in ideal experimental conditions, the MsWP anode electrode in a unitized regenerative fuel cell demonstrated practical performance with noble metal loading smaller than 0.3 mg cm–2.
doi_str_mv 10.1002/adfm.202302586
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2871555996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2871555996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3576-203975300098a2e1421e4d980f25fa190e979e5b656bb03421c8a0dd9c1387d63</originalsourceid><addsrcrecordid>eNqFUMtOAjEUbYwmIrp13cT1YB90ZrpEHmKEkBiM7poy7YwlQ4vtECVx4Sf4jX6JM2Bw6eo-zjn35B4ALjHqYITItVT5qkMQoYiwND4CLRzjOKqn9PjQ4-dTcBbCEiGcJLTbAh83Jt_YrDLOyhIOS51V3ikNBzqYwsK59IWujC1g331_fg3ti7SZVvDe2HqdBSitglMZApx7acPa-QrmzsPxVnlXaLvDn2SlPZy9GyUbH_ig5c4wnIOTXJZBX_zWNngcDef9cTSZ3d71e5MooyyJI4IoTxhFCPFUEo27BOuu4inKCcsl5kjzhGu2iFm8WCBaw1kqkVI8wzRNVEzb4Gp_d-3d60aHSizdxtcPB0HSBDPGOG9YnT0r8y4Er3Ox9mYl_VZgJJqERZOwOCRcC_he8GZKvf2HLXqD0fRP-wNHiYDR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2871555996</pqid></control><display><type>article</type><title>Bifunctional Electrode Design Targeting Co‐Enhanced Kinetics and Mass Transport for Hydrogen and Water Oxidation Reactions</title><source>Wiley</source><creator>Kim, Ye Ji ; Lim, Ahyoun ; Lee, Gyu Rac ; Kim, Minjoon ; Kim, Jin Young ; Kim, Jong Min ; Jung, Yeon Sik ; Park, Hyun S.</creator><creatorcontrib>Kim, Ye Ji ; Lim, Ahyoun ; Lee, Gyu Rac ; Kim, Minjoon ; Kim, Jin Young ; Kim, Jong Min ; Jung, Yeon Sik ; Park, Hyun S.</creatorcontrib><description>Bifunctional catalysts based on noble metals have achieved practical‐level performances in round‐trip energy conversion systems. However, the required amount of noble metals should be substantially reduced via a new catalyst design that can pursue the synergy of the constituent materials’ intrinsic properties and architectural maneuver over reactant/product transport. In this study, cross‐stacked Ir and Pt nanowires resolved the bottlenecks of two reactions essential for the hydrogen‐based energy system: i) hydrogen spillover phenomenon between Pt and Ir nanowires to expedite the hydrogen oxidation reaction and ii) spacing Ir nanowires sufficiently to enhance the mass transport of the oxygen evolution reaction. Simultaneously accommodating the different strategies within the single catalyst layer, a new horizon to design a bifunctional electrode is proposed with the high performance of polymer electrolyte membrane unitized regenerative fuel cells: 47% of round‐trip efficiency at 0.5 A cm−2 with total noble metal loading &lt; 0.3 mg cm−2. A multiscale woodpile (MsWP) structure of Ir‐Pt bifunctional electrode is suggested to enhance kinetics based on hydrogen spillover and efficient mass transport for improved hydrogen and water oxidation reactions. Beyond the proof of concept in ideal experimental conditions, the MsWP anode electrode in a unitized regenerative fuel cell demonstrated practical performance with noble metal loading smaller than 0.3 mg cm–2.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202302586</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>3D nanostructure engineering ; Catalysis ; Catalysts ; Electrodes ; Electrolytic cells ; Energy conversion ; hydrogen oxidation reaction ; Iridium ; Mass transport ; Materials science ; Nanowires ; Noble metals ; Oxidation ; oxygen evolution reaction ; Oxygen evolution reactions ; polymer electrolyte membrane unitized regenerative fuel cells ; Proton exchange membrane fuel cells ; Regenerative fuel cells</subject><ispartof>Advanced functional materials, 2023-10, Vol.33 (40), p.n/a</ispartof><rights>2023 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3576-203975300098a2e1421e4d980f25fa190e979e5b656bb03421c8a0dd9c1387d63</citedby><cites>FETCH-LOGICAL-c3576-203975300098a2e1421e4d980f25fa190e979e5b656bb03421c8a0dd9c1387d63</cites><orcidid>0000-0002-7960-9729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Ye Ji</creatorcontrib><creatorcontrib>Lim, Ahyoun</creatorcontrib><creatorcontrib>Lee, Gyu Rac</creatorcontrib><creatorcontrib>Kim, Minjoon</creatorcontrib><creatorcontrib>Kim, Jin Young</creatorcontrib><creatorcontrib>Kim, Jong Min</creatorcontrib><creatorcontrib>Jung, Yeon Sik</creatorcontrib><creatorcontrib>Park, Hyun S.</creatorcontrib><title>Bifunctional Electrode Design Targeting Co‐Enhanced Kinetics and Mass Transport for Hydrogen and Water Oxidation Reactions</title><title>Advanced functional materials</title><description>Bifunctional catalysts based on noble metals have achieved practical‐level performances in round‐trip energy conversion systems. However, the required amount of noble metals should be substantially reduced via a new catalyst design that can pursue the synergy of the constituent materials’ intrinsic properties and architectural maneuver over reactant/product transport. In this study, cross‐stacked Ir and Pt nanowires resolved the bottlenecks of two reactions essential for the hydrogen‐based energy system: i) hydrogen spillover phenomenon between Pt and Ir nanowires to expedite the hydrogen oxidation reaction and ii) spacing Ir nanowires sufficiently to enhance the mass transport of the oxygen evolution reaction. Simultaneously accommodating the different strategies within the single catalyst layer, a new horizon to design a bifunctional electrode is proposed with the high performance of polymer electrolyte membrane unitized regenerative fuel cells: 47% of round‐trip efficiency at 0.5 A cm−2 with total noble metal loading &lt; 0.3 mg cm−2. A multiscale woodpile (MsWP) structure of Ir‐Pt bifunctional electrode is suggested to enhance kinetics based on hydrogen spillover and efficient mass transport for improved hydrogen and water oxidation reactions. Beyond the proof of concept in ideal experimental conditions, the MsWP anode electrode in a unitized regenerative fuel cell demonstrated practical performance with noble metal loading smaller than 0.3 mg cm–2.</description><subject>3D nanostructure engineering</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Electrodes</subject><subject>Electrolytic cells</subject><subject>Energy conversion</subject><subject>hydrogen oxidation reaction</subject><subject>Iridium</subject><subject>Mass transport</subject><subject>Materials science</subject><subject>Nanowires</subject><subject>Noble metals</subject><subject>Oxidation</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>polymer electrolyte membrane unitized regenerative fuel cells</subject><subject>Proton exchange membrane fuel cells</subject><subject>Regenerative fuel cells</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFUMtOAjEUbYwmIrp13cT1YB90ZrpEHmKEkBiM7poy7YwlQ4vtECVx4Sf4jX6JM2Bw6eo-zjn35B4ALjHqYITItVT5qkMQoYiwND4CLRzjOKqn9PjQ4-dTcBbCEiGcJLTbAh83Jt_YrDLOyhIOS51V3ikNBzqYwsK59IWujC1g331_fg3ti7SZVvDe2HqdBSitglMZApx7acPa-QrmzsPxVnlXaLvDn2SlPZy9GyUbH_ig5c4wnIOTXJZBX_zWNngcDef9cTSZ3d71e5MooyyJI4IoTxhFCPFUEo27BOuu4inKCcsl5kjzhGu2iFm8WCBaw1kqkVI8wzRNVEzb4Gp_d-3d60aHSizdxtcPB0HSBDPGOG9YnT0r8y4Er3Ox9mYl_VZgJJqERZOwOCRcC_he8GZKvf2HLXqD0fRP-wNHiYDR</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Kim, Ye Ji</creator><creator>Lim, Ahyoun</creator><creator>Lee, Gyu Rac</creator><creator>Kim, Minjoon</creator><creator>Kim, Jin Young</creator><creator>Kim, Jong Min</creator><creator>Jung, Yeon Sik</creator><creator>Park, Hyun S.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7960-9729</orcidid></search><sort><creationdate>20231001</creationdate><title>Bifunctional Electrode Design Targeting Co‐Enhanced Kinetics and Mass Transport for Hydrogen and Water Oxidation Reactions</title><author>Kim, Ye Ji ; Lim, Ahyoun ; Lee, Gyu Rac ; Kim, Minjoon ; Kim, Jin Young ; Kim, Jong Min ; Jung, Yeon Sik ; Park, Hyun S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3576-203975300098a2e1421e4d980f25fa190e979e5b656bb03421c8a0dd9c1387d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D nanostructure engineering</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Electrodes</topic><topic>Electrolytic cells</topic><topic>Energy conversion</topic><topic>hydrogen oxidation reaction</topic><topic>Iridium</topic><topic>Mass transport</topic><topic>Materials science</topic><topic>Nanowires</topic><topic>Noble metals</topic><topic>Oxidation</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>polymer electrolyte membrane unitized regenerative fuel cells</topic><topic>Proton exchange membrane fuel cells</topic><topic>Regenerative fuel cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Ye Ji</creatorcontrib><creatorcontrib>Lim, Ahyoun</creatorcontrib><creatorcontrib>Lee, Gyu Rac</creatorcontrib><creatorcontrib>Kim, Minjoon</creatorcontrib><creatorcontrib>Kim, Jin Young</creatorcontrib><creatorcontrib>Kim, Jong Min</creatorcontrib><creatorcontrib>Jung, Yeon Sik</creatorcontrib><creatorcontrib>Park, Hyun S.</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library website</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Ye Ji</au><au>Lim, Ahyoun</au><au>Lee, Gyu Rac</au><au>Kim, Minjoon</au><au>Kim, Jin Young</au><au>Kim, Jong Min</au><au>Jung, Yeon Sik</au><au>Park, Hyun S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifunctional Electrode Design Targeting Co‐Enhanced Kinetics and Mass Transport for Hydrogen and Water Oxidation Reactions</atitle><jtitle>Advanced functional materials</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>33</volume><issue>40</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Bifunctional catalysts based on noble metals have achieved practical‐level performances in round‐trip energy conversion systems. However, the required amount of noble metals should be substantially reduced via a new catalyst design that can pursue the synergy of the constituent materials’ intrinsic properties and architectural maneuver over reactant/product transport. In this study, cross‐stacked Ir and Pt nanowires resolved the bottlenecks of two reactions essential for the hydrogen‐based energy system: i) hydrogen spillover phenomenon between Pt and Ir nanowires to expedite the hydrogen oxidation reaction and ii) spacing Ir nanowires sufficiently to enhance the mass transport of the oxygen evolution reaction. Simultaneously accommodating the different strategies within the single catalyst layer, a new horizon to design a bifunctional electrode is proposed with the high performance of polymer electrolyte membrane unitized regenerative fuel cells: 47% of round‐trip efficiency at 0.5 A cm−2 with total noble metal loading &lt; 0.3 mg cm−2. A multiscale woodpile (MsWP) structure of Ir‐Pt bifunctional electrode is suggested to enhance kinetics based on hydrogen spillover and efficient mass transport for improved hydrogen and water oxidation reactions. Beyond the proof of concept in ideal experimental conditions, the MsWP anode electrode in a unitized regenerative fuel cell demonstrated practical performance with noble metal loading smaller than 0.3 mg cm–2.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202302586</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7960-9729</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-10, Vol.33 (40), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2871555996
source Wiley
subjects 3D nanostructure engineering
Catalysis
Catalysts
Electrodes
Electrolytic cells
Energy conversion
hydrogen oxidation reaction
Iridium
Mass transport
Materials science
Nanowires
Noble metals
Oxidation
oxygen evolution reaction
Oxygen evolution reactions
polymer electrolyte membrane unitized regenerative fuel cells
Proton exchange membrane fuel cells
Regenerative fuel cells
title Bifunctional Electrode Design Targeting Co‐Enhanced Kinetics and Mass Transport for Hydrogen and Water Oxidation Reactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifunctional%20Electrode%20Design%20Targeting%20Co%E2%80%90Enhanced%20Kinetics%20and%20Mass%20Transport%20for%20Hydrogen%20and%20Water%20Oxidation%20Reactions&rft.jtitle=Advanced%20functional%20materials&rft.au=Kim,%20Ye%20Ji&rft.date=2023-10-01&rft.volume=33&rft.issue=40&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202302586&rft_dat=%3Cproquest_cross%3E2871555996%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3576-203975300098a2e1421e4d980f25fa190e979e5b656bb03421c8a0dd9c1387d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2871555996&rft_id=info:pmid/&rfr_iscdi=true