Loading…
Bifunctional Electrode Design Targeting Co‐Enhanced Kinetics and Mass Transport for Hydrogen and Water Oxidation Reactions
Bifunctional catalysts based on noble metals have achieved practical‐level performances in round‐trip energy conversion systems. However, the required amount of noble metals should be substantially reduced via a new catalyst design that can pursue the synergy of the constituent materials’ intrinsic...
Saved in:
Published in: | Advanced functional materials 2023-10, Vol.33 (40), p.n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3576-203975300098a2e1421e4d980f25fa190e979e5b656bb03421c8a0dd9c1387d63 |
---|---|
cites | cdi_FETCH-LOGICAL-c3576-203975300098a2e1421e4d980f25fa190e979e5b656bb03421c8a0dd9c1387d63 |
container_end_page | n/a |
container_issue | 40 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Kim, Ye Ji Lim, Ahyoun Lee, Gyu Rac Kim, Minjoon Kim, Jin Young Kim, Jong Min Jung, Yeon Sik Park, Hyun S. |
description | Bifunctional catalysts based on noble metals have achieved practical‐level performances in round‐trip energy conversion systems. However, the required amount of noble metals should be substantially reduced via a new catalyst design that can pursue the synergy of the constituent materials’ intrinsic properties and architectural maneuver over reactant/product transport. In this study, cross‐stacked Ir and Pt nanowires resolved the bottlenecks of two reactions essential for the hydrogen‐based energy system: i) hydrogen spillover phenomenon between Pt and Ir nanowires to expedite the hydrogen oxidation reaction and ii) spacing Ir nanowires sufficiently to enhance the mass transport of the oxygen evolution reaction. Simultaneously accommodating the different strategies within the single catalyst layer, a new horizon to design a bifunctional electrode is proposed with the high performance of polymer electrolyte membrane unitized regenerative fuel cells: 47% of round‐trip efficiency at 0.5 A cm−2 with total noble metal loading < 0.3 mg cm−2.
A multiscale woodpile (MsWP) structure of Ir‐Pt bifunctional electrode is suggested to enhance kinetics based on hydrogen spillover and efficient mass transport for improved hydrogen and water oxidation reactions. Beyond the proof of concept in ideal experimental conditions, the MsWP anode electrode in a unitized regenerative fuel cell demonstrated practical performance with noble metal loading smaller than 0.3 mg cm–2. |
doi_str_mv | 10.1002/adfm.202302586 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2871555996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2871555996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3576-203975300098a2e1421e4d980f25fa190e979e5b656bb03421c8a0dd9c1387d63</originalsourceid><addsrcrecordid>eNqFUMtOAjEUbYwmIrp13cT1YB90ZrpEHmKEkBiM7poy7YwlQ4vtECVx4Sf4jX6JM2Bw6eo-zjn35B4ALjHqYITItVT5qkMQoYiwND4CLRzjOKqn9PjQ4-dTcBbCEiGcJLTbAh83Jt_YrDLOyhIOS51V3ikNBzqYwsK59IWujC1g331_fg3ti7SZVvDe2HqdBSitglMZApx7acPa-QrmzsPxVnlXaLvDn2SlPZy9GyUbH_ig5c4wnIOTXJZBX_zWNngcDef9cTSZ3d71e5MooyyJI4IoTxhFCPFUEo27BOuu4inKCcsl5kjzhGu2iFm8WCBaw1kqkVI8wzRNVEzb4Gp_d-3d60aHSizdxtcPB0HSBDPGOG9YnT0r8y4Er3Ox9mYl_VZgJJqERZOwOCRcC_he8GZKvf2HLXqD0fRP-wNHiYDR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2871555996</pqid></control><display><type>article</type><title>Bifunctional Electrode Design Targeting Co‐Enhanced Kinetics and Mass Transport for Hydrogen and Water Oxidation Reactions</title><source>Wiley</source><creator>Kim, Ye Ji ; Lim, Ahyoun ; Lee, Gyu Rac ; Kim, Minjoon ; Kim, Jin Young ; Kim, Jong Min ; Jung, Yeon Sik ; Park, Hyun S.</creator><creatorcontrib>Kim, Ye Ji ; Lim, Ahyoun ; Lee, Gyu Rac ; Kim, Minjoon ; Kim, Jin Young ; Kim, Jong Min ; Jung, Yeon Sik ; Park, Hyun S.</creatorcontrib><description>Bifunctional catalysts based on noble metals have achieved practical‐level performances in round‐trip energy conversion systems. However, the required amount of noble metals should be substantially reduced via a new catalyst design that can pursue the synergy of the constituent materials’ intrinsic properties and architectural maneuver over reactant/product transport. In this study, cross‐stacked Ir and Pt nanowires resolved the bottlenecks of two reactions essential for the hydrogen‐based energy system: i) hydrogen spillover phenomenon between Pt and Ir nanowires to expedite the hydrogen oxidation reaction and ii) spacing Ir nanowires sufficiently to enhance the mass transport of the oxygen evolution reaction. Simultaneously accommodating the different strategies within the single catalyst layer, a new horizon to design a bifunctional electrode is proposed with the high performance of polymer electrolyte membrane unitized regenerative fuel cells: 47% of round‐trip efficiency at 0.5 A cm−2 with total noble metal loading < 0.3 mg cm−2.
A multiscale woodpile (MsWP) structure of Ir‐Pt bifunctional electrode is suggested to enhance kinetics based on hydrogen spillover and efficient mass transport for improved hydrogen and water oxidation reactions. Beyond the proof of concept in ideal experimental conditions, the MsWP anode electrode in a unitized regenerative fuel cell demonstrated practical performance with noble metal loading smaller than 0.3 mg cm–2.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202302586</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>3D nanostructure engineering ; Catalysis ; Catalysts ; Electrodes ; Electrolytic cells ; Energy conversion ; hydrogen oxidation reaction ; Iridium ; Mass transport ; Materials science ; Nanowires ; Noble metals ; Oxidation ; oxygen evolution reaction ; Oxygen evolution reactions ; polymer electrolyte membrane unitized regenerative fuel cells ; Proton exchange membrane fuel cells ; Regenerative fuel cells</subject><ispartof>Advanced functional materials, 2023-10, Vol.33 (40), p.n/a</ispartof><rights>2023 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3576-203975300098a2e1421e4d980f25fa190e979e5b656bb03421c8a0dd9c1387d63</citedby><cites>FETCH-LOGICAL-c3576-203975300098a2e1421e4d980f25fa190e979e5b656bb03421c8a0dd9c1387d63</cites><orcidid>0000-0002-7960-9729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Ye Ji</creatorcontrib><creatorcontrib>Lim, Ahyoun</creatorcontrib><creatorcontrib>Lee, Gyu Rac</creatorcontrib><creatorcontrib>Kim, Minjoon</creatorcontrib><creatorcontrib>Kim, Jin Young</creatorcontrib><creatorcontrib>Kim, Jong Min</creatorcontrib><creatorcontrib>Jung, Yeon Sik</creatorcontrib><creatorcontrib>Park, Hyun S.</creatorcontrib><title>Bifunctional Electrode Design Targeting Co‐Enhanced Kinetics and Mass Transport for Hydrogen and Water Oxidation Reactions</title><title>Advanced functional materials</title><description>Bifunctional catalysts based on noble metals have achieved practical‐level performances in round‐trip energy conversion systems. However, the required amount of noble metals should be substantially reduced via a new catalyst design that can pursue the synergy of the constituent materials’ intrinsic properties and architectural maneuver over reactant/product transport. In this study, cross‐stacked Ir and Pt nanowires resolved the bottlenecks of two reactions essential for the hydrogen‐based energy system: i) hydrogen spillover phenomenon between Pt and Ir nanowires to expedite the hydrogen oxidation reaction and ii) spacing Ir nanowires sufficiently to enhance the mass transport of the oxygen evolution reaction. Simultaneously accommodating the different strategies within the single catalyst layer, a new horizon to design a bifunctional electrode is proposed with the high performance of polymer electrolyte membrane unitized regenerative fuel cells: 47% of round‐trip efficiency at 0.5 A cm−2 with total noble metal loading < 0.3 mg cm−2.
A multiscale woodpile (MsWP) structure of Ir‐Pt bifunctional electrode is suggested to enhance kinetics based on hydrogen spillover and efficient mass transport for improved hydrogen and water oxidation reactions. Beyond the proof of concept in ideal experimental conditions, the MsWP anode electrode in a unitized regenerative fuel cell demonstrated practical performance with noble metal loading smaller than 0.3 mg cm–2.</description><subject>3D nanostructure engineering</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Electrodes</subject><subject>Electrolytic cells</subject><subject>Energy conversion</subject><subject>hydrogen oxidation reaction</subject><subject>Iridium</subject><subject>Mass transport</subject><subject>Materials science</subject><subject>Nanowires</subject><subject>Noble metals</subject><subject>Oxidation</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>polymer electrolyte membrane unitized regenerative fuel cells</subject><subject>Proton exchange membrane fuel cells</subject><subject>Regenerative fuel cells</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFUMtOAjEUbYwmIrp13cT1YB90ZrpEHmKEkBiM7poy7YwlQ4vtECVx4Sf4jX6JM2Bw6eo-zjn35B4ALjHqYITItVT5qkMQoYiwND4CLRzjOKqn9PjQ4-dTcBbCEiGcJLTbAh83Jt_YrDLOyhIOS51V3ikNBzqYwsK59IWujC1g331_fg3ti7SZVvDe2HqdBSitglMZApx7acPa-QrmzsPxVnlXaLvDn2SlPZy9GyUbH_ig5c4wnIOTXJZBX_zWNngcDef9cTSZ3d71e5MooyyJI4IoTxhFCPFUEo27BOuu4inKCcsl5kjzhGu2iFm8WCBaw1kqkVI8wzRNVEzb4Gp_d-3d60aHSizdxtcPB0HSBDPGOG9YnT0r8y4Er3Ox9mYl_VZgJJqERZOwOCRcC_he8GZKvf2HLXqD0fRP-wNHiYDR</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Kim, Ye Ji</creator><creator>Lim, Ahyoun</creator><creator>Lee, Gyu Rac</creator><creator>Kim, Minjoon</creator><creator>Kim, Jin Young</creator><creator>Kim, Jong Min</creator><creator>Jung, Yeon Sik</creator><creator>Park, Hyun S.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7960-9729</orcidid></search><sort><creationdate>20231001</creationdate><title>Bifunctional Electrode Design Targeting Co‐Enhanced Kinetics and Mass Transport for Hydrogen and Water Oxidation Reactions</title><author>Kim, Ye Ji ; Lim, Ahyoun ; Lee, Gyu Rac ; Kim, Minjoon ; Kim, Jin Young ; Kim, Jong Min ; Jung, Yeon Sik ; Park, Hyun S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3576-203975300098a2e1421e4d980f25fa190e979e5b656bb03421c8a0dd9c1387d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D nanostructure engineering</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Electrodes</topic><topic>Electrolytic cells</topic><topic>Energy conversion</topic><topic>hydrogen oxidation reaction</topic><topic>Iridium</topic><topic>Mass transport</topic><topic>Materials science</topic><topic>Nanowires</topic><topic>Noble metals</topic><topic>Oxidation</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>polymer electrolyte membrane unitized regenerative fuel cells</topic><topic>Proton exchange membrane fuel cells</topic><topic>Regenerative fuel cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Ye Ji</creatorcontrib><creatorcontrib>Lim, Ahyoun</creatorcontrib><creatorcontrib>Lee, Gyu Rac</creatorcontrib><creatorcontrib>Kim, Minjoon</creatorcontrib><creatorcontrib>Kim, Jin Young</creatorcontrib><creatorcontrib>Kim, Jong Min</creatorcontrib><creatorcontrib>Jung, Yeon Sik</creatorcontrib><creatorcontrib>Park, Hyun S.</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library website</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Ye Ji</au><au>Lim, Ahyoun</au><au>Lee, Gyu Rac</au><au>Kim, Minjoon</au><au>Kim, Jin Young</au><au>Kim, Jong Min</au><au>Jung, Yeon Sik</au><au>Park, Hyun S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifunctional Electrode Design Targeting Co‐Enhanced Kinetics and Mass Transport for Hydrogen and Water Oxidation Reactions</atitle><jtitle>Advanced functional materials</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>33</volume><issue>40</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Bifunctional catalysts based on noble metals have achieved practical‐level performances in round‐trip energy conversion systems. However, the required amount of noble metals should be substantially reduced via a new catalyst design that can pursue the synergy of the constituent materials’ intrinsic properties and architectural maneuver over reactant/product transport. In this study, cross‐stacked Ir and Pt nanowires resolved the bottlenecks of two reactions essential for the hydrogen‐based energy system: i) hydrogen spillover phenomenon between Pt and Ir nanowires to expedite the hydrogen oxidation reaction and ii) spacing Ir nanowires sufficiently to enhance the mass transport of the oxygen evolution reaction. Simultaneously accommodating the different strategies within the single catalyst layer, a new horizon to design a bifunctional electrode is proposed with the high performance of polymer electrolyte membrane unitized regenerative fuel cells: 47% of round‐trip efficiency at 0.5 A cm−2 with total noble metal loading < 0.3 mg cm−2.
A multiscale woodpile (MsWP) structure of Ir‐Pt bifunctional electrode is suggested to enhance kinetics based on hydrogen spillover and efficient mass transport for improved hydrogen and water oxidation reactions. Beyond the proof of concept in ideal experimental conditions, the MsWP anode electrode in a unitized regenerative fuel cell demonstrated practical performance with noble metal loading smaller than 0.3 mg cm–2.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202302586</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7960-9729</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-10, Vol.33 (40), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2871555996 |
source | Wiley |
subjects | 3D nanostructure engineering Catalysis Catalysts Electrodes Electrolytic cells Energy conversion hydrogen oxidation reaction Iridium Mass transport Materials science Nanowires Noble metals Oxidation oxygen evolution reaction Oxygen evolution reactions polymer electrolyte membrane unitized regenerative fuel cells Proton exchange membrane fuel cells Regenerative fuel cells |
title | Bifunctional Electrode Design Targeting Co‐Enhanced Kinetics and Mass Transport for Hydrogen and Water Oxidation Reactions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifunctional%20Electrode%20Design%20Targeting%20Co%E2%80%90Enhanced%20Kinetics%20and%20Mass%20Transport%20for%20Hydrogen%20and%20Water%20Oxidation%20Reactions&rft.jtitle=Advanced%20functional%20materials&rft.au=Kim,%20Ye%20Ji&rft.date=2023-10-01&rft.volume=33&rft.issue=40&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202302586&rft_dat=%3Cproquest_cross%3E2871555996%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3576-203975300098a2e1421e4d980f25fa190e979e5b656bb03421c8a0dd9c1387d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2871555996&rft_id=info:pmid/&rfr_iscdi=true |