Loading…

Unified fluid theory of the collisional thermal Farley–Buneman instability including magnetized multi-species ions

This paper develops a unified linear theory of cross field plasma instabilities, including the Farley–Buneman, electron thermal, and ion thermal instabilities, in spatially uniform collisional plasmas with partially unmagnetized multi-species ions. Collisional plasma instabilities in weakly ionized,...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2023-10, Vol.30 (10)
Main Authors: Dimant, Y. S., Oppenheim, M. M., Evans, S., Martinez-Sykora, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper develops a unified linear theory of cross field plasma instabilities, including the Farley–Buneman, electron thermal, and ion thermal instabilities, in spatially uniform collisional plasmas with partially unmagnetized multi-species ions. Collisional plasma instabilities in weakly ionized, highly dissipative, weakly magnetized plasmas play an important role in the lower Earth's ionosphere and may be of importance in other planetary ionospheres, stellar atmospheres, cometary tails, molecular clouds, accretion disks, etc. In the Earth's ionosphere, these collisional plasma instabilities cause intense electron heating. In the solar chromosphere, they can do the same—an effect originally suggested from spectroscopic observations and modeling. Based on a simplified 5-moment multi-fluid model, the theoretical analysis presented in this paper produces the linear dispersion relation for the combined Thermal Farley–Buneman Instability with an important long-wavelength limit analyzed in detail. This limit provides an easy interpretation of different instability drivers and wave dissipation. This analysis of instability, combined with simulations, will enable us to better understand plasma waves and turbulence in these commonly occurring collisional space plasmas.
ISSN:1070-664X
1089-7674
DOI:10.1063/5.0155500