Loading…
Bathymetry Estimation Using Machine Learning in the Ulleung Basin in the East Sea
Accurate bathymetry estimation is made possible by combining depth data with free-air gravity anomalies on the sea surface recovered from the geoidal heights that are equivalent to the mean sea surface derived from satellite radar altimetry. The residual gravity anomalies that represent the short-wa...
Saved in:
Published in: | Sensors and materials 2023-01, Vol.35 (9), p.3351 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c355t-b207504d563cd16b13ffc4f705fedf4d87d5a0207d7a81da713f14b4d427be753 |
---|---|
cites | |
container_end_page | |
container_issue | 9 |
container_start_page | 3351 |
container_title | Sensors and materials |
container_volume | 35 |
creator | Kim, Kwang Bae Kim, Ji Sung Yun, Hong Sik |
description | Accurate bathymetry estimation is made possible by combining depth data with free-air gravity anomalies on the sea surface recovered from the geoidal heights that are equivalent to the mean sea surface derived from satellite radar altimetry. The residual gravity anomalies that represent the short-wavelength effect are required to accurately estimate bathymetry by combining satellite altimetry-derived free-air gravity anomalies and shipborne data including depth and gravity anomalies. In this study, the optimized ensemble model of machine learning techniques was applied to the residual gravity anomalies to estimate bathymetry by the gravity–geologic method (GGM) from various geospatial information including shipborne depth, shipborne gravity anomalies, and satellite altimetry-derived free-air gravity anomalies, in the Ulleung Basin in the East Sea. From the results, the GGM bathymetry predicted using the optimized ensemble model of machine learning was improved by 32.3 m over the GGM bathymetry estimated using the original depth and gravity anomalies. The method presented in this study is for estimating deep-water bathymetry using machine learning, and it has been proven to have superior performance compared with conventional methods. |
doi_str_mv | 10.18494/SAM4415 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2872301273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872301273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-b207504d563cd16b13ffc4f705fedf4d87d5a0207d7a81da713f14b4d427be753</originalsourceid><addsrcrecordid>eNo1kEFLAzEUhIMoWGrBnxDw4mX1JXnZ7B7bUqvQIlJ7XrKbxG5pd2uSHvrvjbaeHjN8zPCGkHsGT6zAEp9X4yUik1dkwFHIDIq8vCYDKBlmWAp5S0YhbAGAFRJyng_Ix0THzWlvoz_RWYjtXse27-g6tN0XXepm03aWLqz23a_RdjRuLF3vdvaY5EQn7N-c6RDpyuo7cuP0LtjR5Q7J-mX2OX3NFu_zt-l4kTVCypjVHJQENDIXjWF5zYRzDToF0lnj0BTKSA0JMkoXzGiVAIY1GuSqtkqKIXk45x58_320IVbb_ui7VFnxQnEBjCuRqMcz1fg-BG9ddfDpSX-qGFR_m1WXzcQPH9xcyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872301273</pqid></control><display><type>article</type><title>Bathymetry Estimation Using Machine Learning in the Ulleung Basin in the East Sea</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Kim, Kwang Bae ; Kim, Ji Sung ; Yun, Hong Sik</creator><creatorcontrib>Kim, Kwang Bae ; Kim, Ji Sung ; Yun, Hong Sik</creatorcontrib><description>Accurate bathymetry estimation is made possible by combining depth data with free-air gravity anomalies on the sea surface recovered from the geoidal heights that are equivalent to the mean sea surface derived from satellite radar altimetry. The residual gravity anomalies that represent the short-wavelength effect are required to accurately estimate bathymetry by combining satellite altimetry-derived free-air gravity anomalies and shipborne data including depth and gravity anomalies. In this study, the optimized ensemble model of machine learning techniques was applied to the residual gravity anomalies to estimate bathymetry by the gravity–geologic method (GGM) from various geospatial information including shipborne depth, shipborne gravity anomalies, and satellite altimetry-derived free-air gravity anomalies, in the Ulleung Basin in the East Sea. From the results, the GGM bathymetry predicted using the optimized ensemble model of machine learning was improved by 32.3 m over the GGM bathymetry estimated using the original depth and gravity anomalies. The method presented in this study is for estimating deep-water bathymetry using machine learning, and it has been proven to have superior performance compared with conventional methods.</description><identifier>ISSN: 0914-4935</identifier><identifier>EISSN: 2435-0869</identifier><identifier>DOI: 10.18494/SAM4415</identifier><language>eng</language><publisher>Tokyo: MYU Scientific Publishing Division</publisher><subject>Altimeters ; Bathymeters ; Bathymetry ; Estimation ; Gravity anomalies ; Machine learning ; Satellite altimetry</subject><ispartof>Sensors and materials, 2023-01, Vol.35 (9), p.3351</ispartof><rights>Copyright MYU Scientific Publishing Division 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-b207504d563cd16b13ffc4f705fedf4d87d5a0207d7a81da713f14b4d427be753</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Kwang Bae</creatorcontrib><creatorcontrib>Kim, Ji Sung</creatorcontrib><creatorcontrib>Yun, Hong Sik</creatorcontrib><title>Bathymetry Estimation Using Machine Learning in the Ulleung Basin in the East Sea</title><title>Sensors and materials</title><description>Accurate bathymetry estimation is made possible by combining depth data with free-air gravity anomalies on the sea surface recovered from the geoidal heights that are equivalent to the mean sea surface derived from satellite radar altimetry. The residual gravity anomalies that represent the short-wavelength effect are required to accurately estimate bathymetry by combining satellite altimetry-derived free-air gravity anomalies and shipborne data including depth and gravity anomalies. In this study, the optimized ensemble model of machine learning techniques was applied to the residual gravity anomalies to estimate bathymetry by the gravity–geologic method (GGM) from various geospatial information including shipborne depth, shipborne gravity anomalies, and satellite altimetry-derived free-air gravity anomalies, in the Ulleung Basin in the East Sea. From the results, the GGM bathymetry predicted using the optimized ensemble model of machine learning was improved by 32.3 m over the GGM bathymetry estimated using the original depth and gravity anomalies. The method presented in this study is for estimating deep-water bathymetry using machine learning, and it has been proven to have superior performance compared with conventional methods.</description><subject>Altimeters</subject><subject>Bathymeters</subject><subject>Bathymetry</subject><subject>Estimation</subject><subject>Gravity anomalies</subject><subject>Machine learning</subject><subject>Satellite altimetry</subject><issn>0914-4935</issn><issn>2435-0869</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo1kEFLAzEUhIMoWGrBnxDw4mX1JXnZ7B7bUqvQIlJ7XrKbxG5pd2uSHvrvjbaeHjN8zPCGkHsGT6zAEp9X4yUik1dkwFHIDIq8vCYDKBlmWAp5S0YhbAGAFRJyng_Ix0THzWlvoz_RWYjtXse27-g6tN0XXepm03aWLqz23a_RdjRuLF3vdvaY5EQn7N-c6RDpyuo7cuP0LtjR5Q7J-mX2OX3NFu_zt-l4kTVCypjVHJQENDIXjWF5zYRzDToF0lnj0BTKSA0JMkoXzGiVAIY1GuSqtkqKIXk45x58_320IVbb_ui7VFnxQnEBjCuRqMcz1fg-BG9ddfDpSX-qGFR_m1WXzcQPH9xcyQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Kim, Kwang Bae</creator><creator>Kim, Ji Sung</creator><creator>Yun, Hong Sik</creator><general>MYU Scientific Publishing Division</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20230101</creationdate><title>Bathymetry Estimation Using Machine Learning in the Ulleung Basin in the East Sea</title><author>Kim, Kwang Bae ; Kim, Ji Sung ; Yun, Hong Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-b207504d563cd16b13ffc4f705fedf4d87d5a0207d7a81da713f14b4d427be753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Altimeters</topic><topic>Bathymeters</topic><topic>Bathymetry</topic><topic>Estimation</topic><topic>Gravity anomalies</topic><topic>Machine learning</topic><topic>Satellite altimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kwang Bae</creatorcontrib><creatorcontrib>Kim, Ji Sung</creatorcontrib><creatorcontrib>Yun, Hong Sik</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kwang Bae</au><au>Kim, Ji Sung</au><au>Yun, Hong Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bathymetry Estimation Using Machine Learning in the Ulleung Basin in the East Sea</atitle><jtitle>Sensors and materials</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>35</volume><issue>9</issue><spage>3351</spage><pages>3351-</pages><issn>0914-4935</issn><eissn>2435-0869</eissn><abstract>Accurate bathymetry estimation is made possible by combining depth data with free-air gravity anomalies on the sea surface recovered from the geoidal heights that are equivalent to the mean sea surface derived from satellite radar altimetry. The residual gravity anomalies that represent the short-wavelength effect are required to accurately estimate bathymetry by combining satellite altimetry-derived free-air gravity anomalies and shipborne data including depth and gravity anomalies. In this study, the optimized ensemble model of machine learning techniques was applied to the residual gravity anomalies to estimate bathymetry by the gravity–geologic method (GGM) from various geospatial information including shipborne depth, shipborne gravity anomalies, and satellite altimetry-derived free-air gravity anomalies, in the Ulleung Basin in the East Sea. From the results, the GGM bathymetry predicted using the optimized ensemble model of machine learning was improved by 32.3 m over the GGM bathymetry estimated using the original depth and gravity anomalies. The method presented in this study is for estimating deep-water bathymetry using machine learning, and it has been proven to have superior performance compared with conventional methods.</abstract><cop>Tokyo</cop><pub>MYU Scientific Publishing Division</pub><doi>10.18494/SAM4415</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0914-4935 |
ispartof | Sensors and materials, 2023-01, Vol.35 (9), p.3351 |
issn | 0914-4935 2435-0869 |
language | eng |
recordid | cdi_proquest_journals_2872301273 |
source | Free E-Journal (出版社公開部分のみ) |
subjects | Altimeters Bathymeters Bathymetry Estimation Gravity anomalies Machine learning Satellite altimetry |
title | Bathymetry Estimation Using Machine Learning in the Ulleung Basin in the East Sea |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bathymetry%20Estimation%20Using%20Machine%20Learning%20in%20the%20Ulleung%20Basin%20in%20the%20East%20Sea&rft.jtitle=Sensors%20and%20materials&rft.au=Kim,%20Kwang%20Bae&rft.date=2023-01-01&rft.volume=35&rft.issue=9&rft.spage=3351&rft.pages=3351-&rft.issn=0914-4935&rft.eissn=2435-0869&rft_id=info:doi/10.18494/SAM4415&rft_dat=%3Cproquest_cross%3E2872301273%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-b207504d563cd16b13ffc4f705fedf4d87d5a0207d7a81da713f14b4d427be753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2872301273&rft_id=info:pmid/&rfr_iscdi=true |