Loading…

Bathymetry Estimation Using Machine Learning in the Ulleung Basin in the East Sea

Accurate bathymetry estimation is made possible by combining depth data with free-air gravity anomalies on the sea surface recovered from the geoidal heights that are equivalent to the mean sea surface derived from satellite radar altimetry. The residual gravity anomalies that represent the short-wa...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and materials 2023-01, Vol.35 (9), p.3351
Main Authors: Kim, Kwang Bae, Kim, Ji Sung, Yun, Hong Sik
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c355t-b207504d563cd16b13ffc4f705fedf4d87d5a0207d7a81da713f14b4d427be753
cites
container_end_page
container_issue 9
container_start_page 3351
container_title Sensors and materials
container_volume 35
creator Kim, Kwang Bae
Kim, Ji Sung
Yun, Hong Sik
description Accurate bathymetry estimation is made possible by combining depth data with free-air gravity anomalies on the sea surface recovered from the geoidal heights that are equivalent to the mean sea surface derived from satellite radar altimetry. The residual gravity anomalies that represent the short-wavelength effect are required to accurately estimate bathymetry by combining satellite altimetry-derived free-air gravity anomalies and shipborne data including depth and gravity anomalies. In this study, the optimized ensemble model of machine learning techniques was applied to the residual gravity anomalies to estimate bathymetry by the gravity–geologic method (GGM) from various geospatial information including shipborne depth, shipborne gravity anomalies, and satellite altimetry-derived free-air gravity anomalies, in the Ulleung Basin in the East Sea. From the results, the GGM bathymetry predicted using the optimized ensemble model of machine learning was improved by 32.3 m over the GGM bathymetry estimated using the original depth and gravity anomalies. The method presented in this study is for estimating deep-water bathymetry using machine learning, and it has been proven to have superior performance compared with conventional methods.
doi_str_mv 10.18494/SAM4415
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2872301273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872301273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-b207504d563cd16b13ffc4f705fedf4d87d5a0207d7a81da713f14b4d427be753</originalsourceid><addsrcrecordid>eNo1kEFLAzEUhIMoWGrBnxDw4mX1JXnZ7B7bUqvQIlJ7XrKbxG5pd2uSHvrvjbaeHjN8zPCGkHsGT6zAEp9X4yUik1dkwFHIDIq8vCYDKBlmWAp5S0YhbAGAFRJyng_Ix0THzWlvoz_RWYjtXse27-g6tN0XXepm03aWLqz23a_RdjRuLF3vdvaY5EQn7N-c6RDpyuo7cuP0LtjR5Q7J-mX2OX3NFu_zt-l4kTVCypjVHJQENDIXjWF5zYRzDToF0lnj0BTKSA0JMkoXzGiVAIY1GuSqtkqKIXk45x58_320IVbb_ui7VFnxQnEBjCuRqMcz1fg-BG9ddfDpSX-qGFR_m1WXzcQPH9xcyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872301273</pqid></control><display><type>article</type><title>Bathymetry Estimation Using Machine Learning in the Ulleung Basin in the East Sea</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Kim, Kwang Bae ; Kim, Ji Sung ; Yun, Hong Sik</creator><creatorcontrib>Kim, Kwang Bae ; Kim, Ji Sung ; Yun, Hong Sik</creatorcontrib><description>Accurate bathymetry estimation is made possible by combining depth data with free-air gravity anomalies on the sea surface recovered from the geoidal heights that are equivalent to the mean sea surface derived from satellite radar altimetry. The residual gravity anomalies that represent the short-wavelength effect are required to accurately estimate bathymetry by combining satellite altimetry-derived free-air gravity anomalies and shipborne data including depth and gravity anomalies. In this study, the optimized ensemble model of machine learning techniques was applied to the residual gravity anomalies to estimate bathymetry by the gravity–geologic method (GGM) from various geospatial information including shipborne depth, shipborne gravity anomalies, and satellite altimetry-derived free-air gravity anomalies, in the Ulleung Basin in the East Sea. From the results, the GGM bathymetry predicted using the optimized ensemble model of machine learning was improved by 32.3 m over the GGM bathymetry estimated using the original depth and gravity anomalies. The method presented in this study is for estimating deep-water bathymetry using machine learning, and it has been proven to have superior performance compared with conventional methods.</description><identifier>ISSN: 0914-4935</identifier><identifier>EISSN: 2435-0869</identifier><identifier>DOI: 10.18494/SAM4415</identifier><language>eng</language><publisher>Tokyo: MYU Scientific Publishing Division</publisher><subject>Altimeters ; Bathymeters ; Bathymetry ; Estimation ; Gravity anomalies ; Machine learning ; Satellite altimetry</subject><ispartof>Sensors and materials, 2023-01, Vol.35 (9), p.3351</ispartof><rights>Copyright MYU Scientific Publishing Division 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-b207504d563cd16b13ffc4f705fedf4d87d5a0207d7a81da713f14b4d427be753</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Kwang Bae</creatorcontrib><creatorcontrib>Kim, Ji Sung</creatorcontrib><creatorcontrib>Yun, Hong Sik</creatorcontrib><title>Bathymetry Estimation Using Machine Learning in the Ulleung Basin in the East Sea</title><title>Sensors and materials</title><description>Accurate bathymetry estimation is made possible by combining depth data with free-air gravity anomalies on the sea surface recovered from the geoidal heights that are equivalent to the mean sea surface derived from satellite radar altimetry. The residual gravity anomalies that represent the short-wavelength effect are required to accurately estimate bathymetry by combining satellite altimetry-derived free-air gravity anomalies and shipborne data including depth and gravity anomalies. In this study, the optimized ensemble model of machine learning techniques was applied to the residual gravity anomalies to estimate bathymetry by the gravity–geologic method (GGM) from various geospatial information including shipborne depth, shipborne gravity anomalies, and satellite altimetry-derived free-air gravity anomalies, in the Ulleung Basin in the East Sea. From the results, the GGM bathymetry predicted using the optimized ensemble model of machine learning was improved by 32.3 m over the GGM bathymetry estimated using the original depth and gravity anomalies. The method presented in this study is for estimating deep-water bathymetry using machine learning, and it has been proven to have superior performance compared with conventional methods.</description><subject>Altimeters</subject><subject>Bathymeters</subject><subject>Bathymetry</subject><subject>Estimation</subject><subject>Gravity anomalies</subject><subject>Machine learning</subject><subject>Satellite altimetry</subject><issn>0914-4935</issn><issn>2435-0869</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo1kEFLAzEUhIMoWGrBnxDw4mX1JXnZ7B7bUqvQIlJ7XrKbxG5pd2uSHvrvjbaeHjN8zPCGkHsGT6zAEp9X4yUik1dkwFHIDIq8vCYDKBlmWAp5S0YhbAGAFRJyng_Ix0THzWlvoz_RWYjtXse27-g6tN0XXepm03aWLqz23a_RdjRuLF3vdvaY5EQn7N-c6RDpyuo7cuP0LtjR5Q7J-mX2OX3NFu_zt-l4kTVCypjVHJQENDIXjWF5zYRzDToF0lnj0BTKSA0JMkoXzGiVAIY1GuSqtkqKIXk45x58_320IVbb_ui7VFnxQnEBjCuRqMcz1fg-BG9ddfDpSX-qGFR_m1WXzcQPH9xcyQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Kim, Kwang Bae</creator><creator>Kim, Ji Sung</creator><creator>Yun, Hong Sik</creator><general>MYU Scientific Publishing Division</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20230101</creationdate><title>Bathymetry Estimation Using Machine Learning in the Ulleung Basin in the East Sea</title><author>Kim, Kwang Bae ; Kim, Ji Sung ; Yun, Hong Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-b207504d563cd16b13ffc4f705fedf4d87d5a0207d7a81da713f14b4d427be753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Altimeters</topic><topic>Bathymeters</topic><topic>Bathymetry</topic><topic>Estimation</topic><topic>Gravity anomalies</topic><topic>Machine learning</topic><topic>Satellite altimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kwang Bae</creatorcontrib><creatorcontrib>Kim, Ji Sung</creatorcontrib><creatorcontrib>Yun, Hong Sik</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kwang Bae</au><au>Kim, Ji Sung</au><au>Yun, Hong Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bathymetry Estimation Using Machine Learning in the Ulleung Basin in the East Sea</atitle><jtitle>Sensors and materials</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>35</volume><issue>9</issue><spage>3351</spage><pages>3351-</pages><issn>0914-4935</issn><eissn>2435-0869</eissn><abstract>Accurate bathymetry estimation is made possible by combining depth data with free-air gravity anomalies on the sea surface recovered from the geoidal heights that are equivalent to the mean sea surface derived from satellite radar altimetry. The residual gravity anomalies that represent the short-wavelength effect are required to accurately estimate bathymetry by combining satellite altimetry-derived free-air gravity anomalies and shipborne data including depth and gravity anomalies. In this study, the optimized ensemble model of machine learning techniques was applied to the residual gravity anomalies to estimate bathymetry by the gravity–geologic method (GGM) from various geospatial information including shipborne depth, shipborne gravity anomalies, and satellite altimetry-derived free-air gravity anomalies, in the Ulleung Basin in the East Sea. From the results, the GGM bathymetry predicted using the optimized ensemble model of machine learning was improved by 32.3 m over the GGM bathymetry estimated using the original depth and gravity anomalies. The method presented in this study is for estimating deep-water bathymetry using machine learning, and it has been proven to have superior performance compared with conventional methods.</abstract><cop>Tokyo</cop><pub>MYU Scientific Publishing Division</pub><doi>10.18494/SAM4415</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0914-4935
ispartof Sensors and materials, 2023-01, Vol.35 (9), p.3351
issn 0914-4935
2435-0869
language eng
recordid cdi_proquest_journals_2872301273
source Free E-Journal (出版社公開部分のみ)
subjects Altimeters
Bathymeters
Bathymetry
Estimation
Gravity anomalies
Machine learning
Satellite altimetry
title Bathymetry Estimation Using Machine Learning in the Ulleung Basin in the East Sea
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bathymetry%20Estimation%20Using%20Machine%20Learning%20in%20the%20Ulleung%20Basin%20in%20the%20East%20Sea&rft.jtitle=Sensors%20and%20materials&rft.au=Kim,%20Kwang%20Bae&rft.date=2023-01-01&rft.volume=35&rft.issue=9&rft.spage=3351&rft.pages=3351-&rft.issn=0914-4935&rft.eissn=2435-0869&rft_id=info:doi/10.18494/SAM4415&rft_dat=%3Cproquest_cross%3E2872301273%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-b207504d563cd16b13ffc4f705fedf4d87d5a0207d7a81da713f14b4d427be753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2872301273&rft_id=info:pmid/&rfr_iscdi=true