Loading…

The impact of plasma enhancement on the deposition of carbon‐containing zirconia films by metalorganic chemical vapor deposition

Zirconia layers are often used as thermal barriers. In recent years, depositions by chemical vapor deposition methods using a metalorganic precursor (MOCVD) have been primarily investigated. Here, we combine MOCVD with plasma activation ‐ plasma‐enhanced chemical vapor deposition (PECVD]) ‐ of the g...

Full description

Saved in:
Bibliographic Details
Published in:Plasma processes and polymers 2023-10, Vol.20 (10), p.n/a
Main Authors: Maaß, Philipp A., Bedarev, Vitali, Chauvet, Laura, Prenzel, Marina, Glauber, Jean‐Pierre, Devi, Anjana, Böke, Marc, Keudell, Achim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3570-69af850c717bffe81c232506e2c981d46b5d5270f6fe5157591dea2b0a6305b23
cites cdi_FETCH-LOGICAL-c3570-69af850c717bffe81c232506e2c981d46b5d5270f6fe5157591dea2b0a6305b23
container_end_page n/a
container_issue 10
container_start_page
container_title Plasma processes and polymers
container_volume 20
creator Maaß, Philipp A.
Bedarev, Vitali
Chauvet, Laura
Prenzel, Marina
Glauber, Jean‐Pierre
Devi, Anjana
Böke, Marc
Keudell, Achim
description Zirconia layers are often used as thermal barriers. In recent years, depositions by chemical vapor deposition methods using a metalorganic precursor (MOCVD) have been primarily investigated. Here, we combine MOCVD with plasma activation ‐ plasma‐enhanced chemical vapor deposition (PECVD]) ‐ of the gas phase and/or the growth surface to lower the growth temperature and to allow for a flexible coating design. PECVD causes the precursor to be transformed into a chemically active species, yielding thin films with a five times higher sticking coefficient compared to MOCVD. This leads to the onset of crystallization at lower surface temperatures. Carbon is incorporated at oxygen sites, so that the crystalline structure of zirconia is preserved, but the electrical conductivity is affected. The thermal conductivity is like that of pure zirconia. Zirconia films are deposited by combining an MOCVD process with plasma enhancement for applications as thermal barriers in injection molds. The experiments reveal that plasma enhancement leads to activated precursor fragments in the gas phase, leading to changes in growth temperature, crystallization, chemical composition, and thermal conductivity.
doi_str_mv 10.1002/ppap.202300050
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2872435707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872435707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3570-69af850c717bffe81c232506e2c981d46b5d5270f6fe5157591dea2b0a6305b23</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhgdRsFa3rgOuW08yzVyWpXiDgl3U9XAmTdqUmSQmU6WuxCfwGX0SUyrVnatz4fvP5U-SSwpDCsCunUM3ZMBSAOBwlPRoRtmgKLLy-JBzOE3OQlgDpMAL6CUf85UkunUoOmIVcQ2GFok0KzRCttLEriFdZBbS2aA7HcvICfS1NV_vn8KaDrXRZknetI-VRqJ00wZSb0krO2ysX6LRgoiVbLXAhrygs_7PvPPkRGET5MVP7CdPtzfzyf1g-nj3MBlPByLlOQyyElW8X-Q0r5WSBRUsZRwyyURZ0MUoq_mCsxxUpiSnPOclXUhkNWAWf61Z2k-u9nOdt88bGbpqbTfexJUVK3I22m3JIzXcU8LbELxUlfO6Rb-tKFQ7n6udz9XB5ygo94JX3cjtP3Q1m41nv9pvnESE6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872435707</pqid></control><display><type>article</type><title>The impact of plasma enhancement on the deposition of carbon‐containing zirconia films by metalorganic chemical vapor deposition</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Maaß, Philipp A. ; Bedarev, Vitali ; Chauvet, Laura ; Prenzel, Marina ; Glauber, Jean‐Pierre ; Devi, Anjana ; Böke, Marc ; Keudell, Achim</creator><creatorcontrib>Maaß, Philipp A. ; Bedarev, Vitali ; Chauvet, Laura ; Prenzel, Marina ; Glauber, Jean‐Pierre ; Devi, Anjana ; Böke, Marc ; Keudell, Achim</creatorcontrib><description>Zirconia layers are often used as thermal barriers. In recent years, depositions by chemical vapor deposition methods using a metalorganic precursor (MOCVD) have been primarily investigated. Here, we combine MOCVD with plasma activation ‐ plasma‐enhanced chemical vapor deposition (PECVD]) ‐ of the gas phase and/or the growth surface to lower the growth temperature and to allow for a flexible coating design. PECVD causes the precursor to be transformed into a chemically active species, yielding thin films with a five times higher sticking coefficient compared to MOCVD. This leads to the onset of crystallization at lower surface temperatures. Carbon is incorporated at oxygen sites, so that the crystalline structure of zirconia is preserved, but the electrical conductivity is affected. The thermal conductivity is like that of pure zirconia. Zirconia films are deposited by combining an MOCVD process with plasma enhancement for applications as thermal barriers in injection molds. The experiments reveal that plasma enhancement leads to activated precursor fragments in the gas phase, leading to changes in growth temperature, crystallization, chemical composition, and thermal conductivity.</description><identifier>ISSN: 1612-8850</identifier><identifier>EISSN: 1612-8869</identifier><identifier>DOI: 10.1002/ppap.202300050</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Crystallization ; Electrical resistivity ; Metalorganic chemical vapor deposition ; MOCVD ; PECVD ; Precursors ; thermal barrier coatings ; Thermal conductivity ; Thin films ; Vapor phases ; XPS ; Zirconia ; Zirconium dioxide</subject><ispartof>Plasma processes and polymers, 2023-10, Vol.20 (10), p.n/a</ispartof><rights>2023 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3570-69af850c717bffe81c232506e2c981d46b5d5270f6fe5157591dea2b0a6305b23</citedby><cites>FETCH-LOGICAL-c3570-69af850c717bffe81c232506e2c981d46b5d5270f6fe5157591dea2b0a6305b23</cites><orcidid>0000-0002-0583-099X ; 0000-0003-3887-9359 ; 0009-0000-3891-4092 ; 0000-0003-2510-0377 ; 0000-0001-5244-7590 ; 0000-0003-1062-5808 ; 0000-0003-0015-2074 ; 0000-0003-2142-8105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Maaß, Philipp A.</creatorcontrib><creatorcontrib>Bedarev, Vitali</creatorcontrib><creatorcontrib>Chauvet, Laura</creatorcontrib><creatorcontrib>Prenzel, Marina</creatorcontrib><creatorcontrib>Glauber, Jean‐Pierre</creatorcontrib><creatorcontrib>Devi, Anjana</creatorcontrib><creatorcontrib>Böke, Marc</creatorcontrib><creatorcontrib>Keudell, Achim</creatorcontrib><title>The impact of plasma enhancement on the deposition of carbon‐containing zirconia films by metalorganic chemical vapor deposition</title><title>Plasma processes and polymers</title><description>Zirconia layers are often used as thermal barriers. In recent years, depositions by chemical vapor deposition methods using a metalorganic precursor (MOCVD) have been primarily investigated. Here, we combine MOCVD with plasma activation ‐ plasma‐enhanced chemical vapor deposition (PECVD]) ‐ of the gas phase and/or the growth surface to lower the growth temperature and to allow for a flexible coating design. PECVD causes the precursor to be transformed into a chemically active species, yielding thin films with a five times higher sticking coefficient compared to MOCVD. This leads to the onset of crystallization at lower surface temperatures. Carbon is incorporated at oxygen sites, so that the crystalline structure of zirconia is preserved, but the electrical conductivity is affected. The thermal conductivity is like that of pure zirconia. Zirconia films are deposited by combining an MOCVD process with plasma enhancement for applications as thermal barriers in injection molds. The experiments reveal that plasma enhancement leads to activated precursor fragments in the gas phase, leading to changes in growth temperature, crystallization, chemical composition, and thermal conductivity.</description><subject>Carbon</subject><subject>Crystallization</subject><subject>Electrical resistivity</subject><subject>Metalorganic chemical vapor deposition</subject><subject>MOCVD</subject><subject>PECVD</subject><subject>Precursors</subject><subject>thermal barrier coatings</subject><subject>Thermal conductivity</subject><subject>Thin films</subject><subject>Vapor phases</subject><subject>XPS</subject><subject>Zirconia</subject><subject>Zirconium dioxide</subject><issn>1612-8850</issn><issn>1612-8869</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMtKAzEUhgdRsFa3rgOuW08yzVyWpXiDgl3U9XAmTdqUmSQmU6WuxCfwGX0SUyrVnatz4fvP5U-SSwpDCsCunUM3ZMBSAOBwlPRoRtmgKLLy-JBzOE3OQlgDpMAL6CUf85UkunUoOmIVcQ2GFok0KzRCttLEriFdZBbS2aA7HcvICfS1NV_vn8KaDrXRZknetI-VRqJ00wZSb0krO2ysX6LRgoiVbLXAhrygs_7PvPPkRGET5MVP7CdPtzfzyf1g-nj3MBlPByLlOQyyElW8X-Q0r5WSBRUsZRwyyURZ0MUoq_mCsxxUpiSnPOclXUhkNWAWf61Z2k-u9nOdt88bGbpqbTfexJUVK3I22m3JIzXcU8LbELxUlfO6Rb-tKFQ7n6udz9XB5ygo94JX3cjtP3Q1m41nv9pvnESE6Q</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Maaß, Philipp A.</creator><creator>Bedarev, Vitali</creator><creator>Chauvet, Laura</creator><creator>Prenzel, Marina</creator><creator>Glauber, Jean‐Pierre</creator><creator>Devi, Anjana</creator><creator>Böke, Marc</creator><creator>Keudell, Achim</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0583-099X</orcidid><orcidid>https://orcid.org/0000-0003-3887-9359</orcidid><orcidid>https://orcid.org/0009-0000-3891-4092</orcidid><orcidid>https://orcid.org/0000-0003-2510-0377</orcidid><orcidid>https://orcid.org/0000-0001-5244-7590</orcidid><orcidid>https://orcid.org/0000-0003-1062-5808</orcidid><orcidid>https://orcid.org/0000-0003-0015-2074</orcidid><orcidid>https://orcid.org/0000-0003-2142-8105</orcidid></search><sort><creationdate>202310</creationdate><title>The impact of plasma enhancement on the deposition of carbon‐containing zirconia films by metalorganic chemical vapor deposition</title><author>Maaß, Philipp A. ; Bedarev, Vitali ; Chauvet, Laura ; Prenzel, Marina ; Glauber, Jean‐Pierre ; Devi, Anjana ; Böke, Marc ; Keudell, Achim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3570-69af850c717bffe81c232506e2c981d46b5d5270f6fe5157591dea2b0a6305b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>Crystallization</topic><topic>Electrical resistivity</topic><topic>Metalorganic chemical vapor deposition</topic><topic>MOCVD</topic><topic>PECVD</topic><topic>Precursors</topic><topic>thermal barrier coatings</topic><topic>Thermal conductivity</topic><topic>Thin films</topic><topic>Vapor phases</topic><topic>XPS</topic><topic>Zirconia</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maaß, Philipp A.</creatorcontrib><creatorcontrib>Bedarev, Vitali</creatorcontrib><creatorcontrib>Chauvet, Laura</creatorcontrib><creatorcontrib>Prenzel, Marina</creatorcontrib><creatorcontrib>Glauber, Jean‐Pierre</creatorcontrib><creatorcontrib>Devi, Anjana</creatorcontrib><creatorcontrib>Böke, Marc</creatorcontrib><creatorcontrib>Keudell, Achim</creatorcontrib><collection>Wiley Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Plasma processes and polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maaß, Philipp A.</au><au>Bedarev, Vitali</au><au>Chauvet, Laura</au><au>Prenzel, Marina</au><au>Glauber, Jean‐Pierre</au><au>Devi, Anjana</au><au>Böke, Marc</au><au>Keudell, Achim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The impact of plasma enhancement on the deposition of carbon‐containing zirconia films by metalorganic chemical vapor deposition</atitle><jtitle>Plasma processes and polymers</jtitle><date>2023-10</date><risdate>2023</risdate><volume>20</volume><issue>10</issue><epage>n/a</epage><issn>1612-8850</issn><eissn>1612-8869</eissn><abstract>Zirconia layers are often used as thermal barriers. In recent years, depositions by chemical vapor deposition methods using a metalorganic precursor (MOCVD) have been primarily investigated. Here, we combine MOCVD with plasma activation ‐ plasma‐enhanced chemical vapor deposition (PECVD]) ‐ of the gas phase and/or the growth surface to lower the growth temperature and to allow for a flexible coating design. PECVD causes the precursor to be transformed into a chemically active species, yielding thin films with a five times higher sticking coefficient compared to MOCVD. This leads to the onset of crystallization at lower surface temperatures. Carbon is incorporated at oxygen sites, so that the crystalline structure of zirconia is preserved, but the electrical conductivity is affected. The thermal conductivity is like that of pure zirconia. Zirconia films are deposited by combining an MOCVD process with plasma enhancement for applications as thermal barriers in injection molds. The experiments reveal that plasma enhancement leads to activated precursor fragments in the gas phase, leading to changes in growth temperature, crystallization, chemical composition, and thermal conductivity.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ppap.202300050</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0583-099X</orcidid><orcidid>https://orcid.org/0000-0003-3887-9359</orcidid><orcidid>https://orcid.org/0009-0000-3891-4092</orcidid><orcidid>https://orcid.org/0000-0003-2510-0377</orcidid><orcidid>https://orcid.org/0000-0001-5244-7590</orcidid><orcidid>https://orcid.org/0000-0003-1062-5808</orcidid><orcidid>https://orcid.org/0000-0003-0015-2074</orcidid><orcidid>https://orcid.org/0000-0003-2142-8105</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1612-8850
ispartof Plasma processes and polymers, 2023-10, Vol.20 (10), p.n/a
issn 1612-8850
1612-8869
language eng
recordid cdi_proquest_journals_2872435707
source Wiley-Blackwell Read & Publish Collection
subjects Carbon
Crystallization
Electrical resistivity
Metalorganic chemical vapor deposition
MOCVD
PECVD
Precursors
thermal barrier coatings
Thermal conductivity
Thin films
Vapor phases
XPS
Zirconia
Zirconium dioxide
title The impact of plasma enhancement on the deposition of carbon‐containing zirconia films by metalorganic chemical vapor deposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20impact%20of%20plasma%20enhancement%20on%20the%20deposition%20of%20carbon%E2%80%90containing%20zirconia%20films%20by%20metalorganic%20chemical%20vapor%20deposition&rft.jtitle=Plasma%20processes%20and%20polymers&rft.au=Maa%C3%9F,%20Philipp%20A.&rft.date=2023-10&rft.volume=20&rft.issue=10&rft.epage=n/a&rft.issn=1612-8850&rft.eissn=1612-8869&rft_id=info:doi/10.1002/ppap.202300050&rft_dat=%3Cproquest_cross%3E2872435707%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3570-69af850c717bffe81c232506e2c981d46b5d5270f6fe5157591dea2b0a6305b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2872435707&rft_id=info:pmid/&rfr_iscdi=true