Loading…
The impact of plasma enhancement on the deposition of carbon‐containing zirconia films by metalorganic chemical vapor deposition
Zirconia layers are often used as thermal barriers. In recent years, depositions by chemical vapor deposition methods using a metalorganic precursor (MOCVD) have been primarily investigated. Here, we combine MOCVD with plasma activation ‐ plasma‐enhanced chemical vapor deposition (PECVD]) ‐ of the g...
Saved in:
Published in: | Plasma processes and polymers 2023-10, Vol.20 (10), p.n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3570-69af850c717bffe81c232506e2c981d46b5d5270f6fe5157591dea2b0a6305b23 |
---|---|
cites | cdi_FETCH-LOGICAL-c3570-69af850c717bffe81c232506e2c981d46b5d5270f6fe5157591dea2b0a6305b23 |
container_end_page | n/a |
container_issue | 10 |
container_start_page | |
container_title | Plasma processes and polymers |
container_volume | 20 |
creator | Maaß, Philipp A. Bedarev, Vitali Chauvet, Laura Prenzel, Marina Glauber, Jean‐Pierre Devi, Anjana Böke, Marc Keudell, Achim |
description | Zirconia layers are often used as thermal barriers. In recent years, depositions by chemical vapor deposition methods using a metalorganic precursor (MOCVD) have been primarily investigated. Here, we combine MOCVD with plasma activation ‐ plasma‐enhanced chemical vapor deposition (PECVD]) ‐ of the gas phase and/or the growth surface to lower the growth temperature and to allow for a flexible coating design. PECVD causes the precursor to be transformed into a chemically active species, yielding thin films with a five times higher sticking coefficient compared to MOCVD. This leads to the onset of crystallization at lower surface temperatures. Carbon is incorporated at oxygen sites, so that the crystalline structure of zirconia is preserved, but the electrical conductivity is affected. The thermal conductivity is like that of pure zirconia.
Zirconia films are deposited by combining an MOCVD process with plasma enhancement for applications as thermal barriers in injection molds. The experiments reveal that plasma enhancement leads to activated precursor fragments in the gas phase, leading to changes in growth temperature, crystallization, chemical composition, and thermal conductivity. |
doi_str_mv | 10.1002/ppap.202300050 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2872435707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872435707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3570-69af850c717bffe81c232506e2c981d46b5d5270f6fe5157591dea2b0a6305b23</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhgdRsFa3rgOuW08yzVyWpXiDgl3U9XAmTdqUmSQmU6WuxCfwGX0SUyrVnatz4fvP5U-SSwpDCsCunUM3ZMBSAOBwlPRoRtmgKLLy-JBzOE3OQlgDpMAL6CUf85UkunUoOmIVcQ2GFok0KzRCttLEriFdZBbS2aA7HcvICfS1NV_vn8KaDrXRZknetI-VRqJ00wZSb0krO2ysX6LRgoiVbLXAhrygs_7PvPPkRGET5MVP7CdPtzfzyf1g-nj3MBlPByLlOQyyElW8X-Q0r5WSBRUsZRwyyURZ0MUoq_mCsxxUpiSnPOclXUhkNWAWf61Z2k-u9nOdt88bGbpqbTfexJUVK3I22m3JIzXcU8LbELxUlfO6Rb-tKFQ7n6udz9XB5ygo94JX3cjtP3Q1m41nv9pvnESE6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872435707</pqid></control><display><type>article</type><title>The impact of plasma enhancement on the deposition of carbon‐containing zirconia films by metalorganic chemical vapor deposition</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Maaß, Philipp A. ; Bedarev, Vitali ; Chauvet, Laura ; Prenzel, Marina ; Glauber, Jean‐Pierre ; Devi, Anjana ; Böke, Marc ; Keudell, Achim</creator><creatorcontrib>Maaß, Philipp A. ; Bedarev, Vitali ; Chauvet, Laura ; Prenzel, Marina ; Glauber, Jean‐Pierre ; Devi, Anjana ; Böke, Marc ; Keudell, Achim</creatorcontrib><description>Zirconia layers are often used as thermal barriers. In recent years, depositions by chemical vapor deposition methods using a metalorganic precursor (MOCVD) have been primarily investigated. Here, we combine MOCVD with plasma activation ‐ plasma‐enhanced chemical vapor deposition (PECVD]) ‐ of the gas phase and/or the growth surface to lower the growth temperature and to allow for a flexible coating design. PECVD causes the precursor to be transformed into a chemically active species, yielding thin films with a five times higher sticking coefficient compared to MOCVD. This leads to the onset of crystallization at lower surface temperatures. Carbon is incorporated at oxygen sites, so that the crystalline structure of zirconia is preserved, but the electrical conductivity is affected. The thermal conductivity is like that of pure zirconia.
Zirconia films are deposited by combining an MOCVD process with plasma enhancement for applications as thermal barriers in injection molds. The experiments reveal that plasma enhancement leads to activated precursor fragments in the gas phase, leading to changes in growth temperature, crystallization, chemical composition, and thermal conductivity.</description><identifier>ISSN: 1612-8850</identifier><identifier>EISSN: 1612-8869</identifier><identifier>DOI: 10.1002/ppap.202300050</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Crystallization ; Electrical resistivity ; Metalorganic chemical vapor deposition ; MOCVD ; PECVD ; Precursors ; thermal barrier coatings ; Thermal conductivity ; Thin films ; Vapor phases ; XPS ; Zirconia ; Zirconium dioxide</subject><ispartof>Plasma processes and polymers, 2023-10, Vol.20 (10), p.n/a</ispartof><rights>2023 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3570-69af850c717bffe81c232506e2c981d46b5d5270f6fe5157591dea2b0a6305b23</citedby><cites>FETCH-LOGICAL-c3570-69af850c717bffe81c232506e2c981d46b5d5270f6fe5157591dea2b0a6305b23</cites><orcidid>0000-0002-0583-099X ; 0000-0003-3887-9359 ; 0009-0000-3891-4092 ; 0000-0003-2510-0377 ; 0000-0001-5244-7590 ; 0000-0003-1062-5808 ; 0000-0003-0015-2074 ; 0000-0003-2142-8105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Maaß, Philipp A.</creatorcontrib><creatorcontrib>Bedarev, Vitali</creatorcontrib><creatorcontrib>Chauvet, Laura</creatorcontrib><creatorcontrib>Prenzel, Marina</creatorcontrib><creatorcontrib>Glauber, Jean‐Pierre</creatorcontrib><creatorcontrib>Devi, Anjana</creatorcontrib><creatorcontrib>Böke, Marc</creatorcontrib><creatorcontrib>Keudell, Achim</creatorcontrib><title>The impact of plasma enhancement on the deposition of carbon‐containing zirconia films by metalorganic chemical vapor deposition</title><title>Plasma processes and polymers</title><description>Zirconia layers are often used as thermal barriers. In recent years, depositions by chemical vapor deposition methods using a metalorganic precursor (MOCVD) have been primarily investigated. Here, we combine MOCVD with plasma activation ‐ plasma‐enhanced chemical vapor deposition (PECVD]) ‐ of the gas phase and/or the growth surface to lower the growth temperature and to allow for a flexible coating design. PECVD causes the precursor to be transformed into a chemically active species, yielding thin films with a five times higher sticking coefficient compared to MOCVD. This leads to the onset of crystallization at lower surface temperatures. Carbon is incorporated at oxygen sites, so that the crystalline structure of zirconia is preserved, but the electrical conductivity is affected. The thermal conductivity is like that of pure zirconia.
Zirconia films are deposited by combining an MOCVD process with plasma enhancement for applications as thermal barriers in injection molds. The experiments reveal that plasma enhancement leads to activated precursor fragments in the gas phase, leading to changes in growth temperature, crystallization, chemical composition, and thermal conductivity.</description><subject>Carbon</subject><subject>Crystallization</subject><subject>Electrical resistivity</subject><subject>Metalorganic chemical vapor deposition</subject><subject>MOCVD</subject><subject>PECVD</subject><subject>Precursors</subject><subject>thermal barrier coatings</subject><subject>Thermal conductivity</subject><subject>Thin films</subject><subject>Vapor phases</subject><subject>XPS</subject><subject>Zirconia</subject><subject>Zirconium dioxide</subject><issn>1612-8850</issn><issn>1612-8869</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMtKAzEUhgdRsFa3rgOuW08yzVyWpXiDgl3U9XAmTdqUmSQmU6WuxCfwGX0SUyrVnatz4fvP5U-SSwpDCsCunUM3ZMBSAOBwlPRoRtmgKLLy-JBzOE3OQlgDpMAL6CUf85UkunUoOmIVcQ2GFok0KzRCttLEriFdZBbS2aA7HcvICfS1NV_vn8KaDrXRZknetI-VRqJ00wZSb0krO2ysX6LRgoiVbLXAhrygs_7PvPPkRGET5MVP7CdPtzfzyf1g-nj3MBlPByLlOQyyElW8X-Q0r5WSBRUsZRwyyURZ0MUoq_mCsxxUpiSnPOclXUhkNWAWf61Z2k-u9nOdt88bGbpqbTfexJUVK3I22m3JIzXcU8LbELxUlfO6Rb-tKFQ7n6udz9XB5ygo94JX3cjtP3Q1m41nv9pvnESE6Q</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Maaß, Philipp A.</creator><creator>Bedarev, Vitali</creator><creator>Chauvet, Laura</creator><creator>Prenzel, Marina</creator><creator>Glauber, Jean‐Pierre</creator><creator>Devi, Anjana</creator><creator>Böke, Marc</creator><creator>Keudell, Achim</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0583-099X</orcidid><orcidid>https://orcid.org/0000-0003-3887-9359</orcidid><orcidid>https://orcid.org/0009-0000-3891-4092</orcidid><orcidid>https://orcid.org/0000-0003-2510-0377</orcidid><orcidid>https://orcid.org/0000-0001-5244-7590</orcidid><orcidid>https://orcid.org/0000-0003-1062-5808</orcidid><orcidid>https://orcid.org/0000-0003-0015-2074</orcidid><orcidid>https://orcid.org/0000-0003-2142-8105</orcidid></search><sort><creationdate>202310</creationdate><title>The impact of plasma enhancement on the deposition of carbon‐containing zirconia films by metalorganic chemical vapor deposition</title><author>Maaß, Philipp A. ; Bedarev, Vitali ; Chauvet, Laura ; Prenzel, Marina ; Glauber, Jean‐Pierre ; Devi, Anjana ; Böke, Marc ; Keudell, Achim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3570-69af850c717bffe81c232506e2c981d46b5d5270f6fe5157591dea2b0a6305b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>Crystallization</topic><topic>Electrical resistivity</topic><topic>Metalorganic chemical vapor deposition</topic><topic>MOCVD</topic><topic>PECVD</topic><topic>Precursors</topic><topic>thermal barrier coatings</topic><topic>Thermal conductivity</topic><topic>Thin films</topic><topic>Vapor phases</topic><topic>XPS</topic><topic>Zirconia</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maaß, Philipp A.</creatorcontrib><creatorcontrib>Bedarev, Vitali</creatorcontrib><creatorcontrib>Chauvet, Laura</creatorcontrib><creatorcontrib>Prenzel, Marina</creatorcontrib><creatorcontrib>Glauber, Jean‐Pierre</creatorcontrib><creatorcontrib>Devi, Anjana</creatorcontrib><creatorcontrib>Böke, Marc</creatorcontrib><creatorcontrib>Keudell, Achim</creatorcontrib><collection>Wiley Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Plasma processes and polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maaß, Philipp A.</au><au>Bedarev, Vitali</au><au>Chauvet, Laura</au><au>Prenzel, Marina</au><au>Glauber, Jean‐Pierre</au><au>Devi, Anjana</au><au>Böke, Marc</au><au>Keudell, Achim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The impact of plasma enhancement on the deposition of carbon‐containing zirconia films by metalorganic chemical vapor deposition</atitle><jtitle>Plasma processes and polymers</jtitle><date>2023-10</date><risdate>2023</risdate><volume>20</volume><issue>10</issue><epage>n/a</epage><issn>1612-8850</issn><eissn>1612-8869</eissn><abstract>Zirconia layers are often used as thermal barriers. In recent years, depositions by chemical vapor deposition methods using a metalorganic precursor (MOCVD) have been primarily investigated. Here, we combine MOCVD with plasma activation ‐ plasma‐enhanced chemical vapor deposition (PECVD]) ‐ of the gas phase and/or the growth surface to lower the growth temperature and to allow for a flexible coating design. PECVD causes the precursor to be transformed into a chemically active species, yielding thin films with a five times higher sticking coefficient compared to MOCVD. This leads to the onset of crystallization at lower surface temperatures. Carbon is incorporated at oxygen sites, so that the crystalline structure of zirconia is preserved, but the electrical conductivity is affected. The thermal conductivity is like that of pure zirconia.
Zirconia films are deposited by combining an MOCVD process with plasma enhancement for applications as thermal barriers in injection molds. The experiments reveal that plasma enhancement leads to activated precursor fragments in the gas phase, leading to changes in growth temperature, crystallization, chemical composition, and thermal conductivity.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ppap.202300050</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0583-099X</orcidid><orcidid>https://orcid.org/0000-0003-3887-9359</orcidid><orcidid>https://orcid.org/0009-0000-3891-4092</orcidid><orcidid>https://orcid.org/0000-0003-2510-0377</orcidid><orcidid>https://orcid.org/0000-0001-5244-7590</orcidid><orcidid>https://orcid.org/0000-0003-1062-5808</orcidid><orcidid>https://orcid.org/0000-0003-0015-2074</orcidid><orcidid>https://orcid.org/0000-0003-2142-8105</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1612-8850 |
ispartof | Plasma processes and polymers, 2023-10, Vol.20 (10), p.n/a |
issn | 1612-8850 1612-8869 |
language | eng |
recordid | cdi_proquest_journals_2872435707 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Carbon Crystallization Electrical resistivity Metalorganic chemical vapor deposition MOCVD PECVD Precursors thermal barrier coatings Thermal conductivity Thin films Vapor phases XPS Zirconia Zirconium dioxide |
title | The impact of plasma enhancement on the deposition of carbon‐containing zirconia films by metalorganic chemical vapor deposition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20impact%20of%20plasma%20enhancement%20on%20the%20deposition%20of%20carbon%E2%80%90containing%20zirconia%20films%20by%20metalorganic%20chemical%20vapor%20deposition&rft.jtitle=Plasma%20processes%20and%20polymers&rft.au=Maa%C3%9F,%20Philipp%20A.&rft.date=2023-10&rft.volume=20&rft.issue=10&rft.epage=n/a&rft.issn=1612-8850&rft.eissn=1612-8869&rft_id=info:doi/10.1002/ppap.202300050&rft_dat=%3Cproquest_cross%3E2872435707%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3570-69af850c717bffe81c232506e2c981d46b5d5270f6fe5157591dea2b0a6305b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2872435707&rft_id=info:pmid/&rfr_iscdi=true |