Loading…

Looking Beyond Two Frames: End-to-End Multi-Object Tracking Using Spatial and Temporal Transformers

Tracking a time-varying indefinite number of objects in a video sequence over time remains a challenge despite recent advances in the field. Most existing approaches are not able to properly handle multi-object tracking challenges such as occlusion, in part because they ignore long-term temporal inf...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2023-11, Vol.45 (11), p.12783-12797
Main Authors: Zhu, Tianyu, Hiller, Markus, Ehsanpour, Mahsa, Ma, Rongkai, Drummond, Tom, Reid, Ian, Rezatofighi, Hamid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tracking a time-varying indefinite number of objects in a video sequence over time remains a challenge despite recent advances in the field. Most existing approaches are not able to properly handle multi-object tracking challenges such as occlusion, in part because they ignore long-term temporal information. To address these shortcomings, we present MO3TR: a truly end-to-end Transformer-based online multi-object tracking (MOT) framework that learns to handle occlusions, track initiation and termination without the need for an explicit data association module or any heuristics. MO3TR encodes object interactions into long-term temporal embeddings using a combination of spatial and temporal Transformers, and recursively uses the information jointly with the input data to estimate the states of all tracked objects over time. The spatial attention mechanism enables our framework to learn implicit representations between all the objects and the objects to the measurements, while the temporal attention mechanism focuses on specific parts of past information, allowing our approach to resolve occlusions over multiple frames. Our experiments demonstrate the potential of this new approach, achieving results on par with or better than the current state-of-the-art on multiple MOT metrics for several popular multi-object tracking benchmarks.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2022.3213073