Loading…
Looking Beyond Two Frames: End-to-End Multi-Object Tracking Using Spatial and Temporal Transformers
Tracking a time-varying indefinite number of objects in a video sequence over time remains a challenge despite recent advances in the field. Most existing approaches are not able to properly handle multi-object tracking challenges such as occlusion, in part because they ignore long-term temporal inf...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2023-11, Vol.45 (11), p.12783-12797 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-5a0dddaccbea2adadf2d85056ebdf6615bcb57ecf57a34e23d6b535e91a2fca33 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-5a0dddaccbea2adadf2d85056ebdf6615bcb57ecf57a34e23d6b535e91a2fca33 |
container_end_page | 12797 |
container_issue | 11 |
container_start_page | 12783 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 45 |
creator | Zhu, Tianyu Hiller, Markus Ehsanpour, Mahsa Ma, Rongkai Drummond, Tom Reid, Ian Rezatofighi, Hamid |
description | Tracking a time-varying indefinite number of objects in a video sequence over time remains a challenge despite recent advances in the field. Most existing approaches are not able to properly handle multi-object tracking challenges such as occlusion, in part because they ignore long-term temporal information. To address these shortcomings, we present MO3TR: a truly end-to-end Transformer-based online multi-object tracking (MOT) framework that learns to handle occlusions, track initiation and termination without the need for an explicit data association module or any heuristics. MO3TR encodes object interactions into long-term temporal embeddings using a combination of spatial and temporal Transformers, and recursively uses the information jointly with the input data to estimate the states of all tracked objects over time. The spatial attention mechanism enables our framework to learn implicit representations between all the objects and the objects to the measurements, while the temporal attention mechanism focuses on specific parts of past information, allowing our approach to resolve occlusions over multiple frames. Our experiments demonstrate the potential of this new approach, achieving results on par with or better than the current state-of-the-art on multiple MOT metrics for several popular multi-object tracking benchmarks. |
doi_str_mv | 10.1109/TPAMI.2022.3213073 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2872443924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9914676</ieee_id><sourcerecordid>2723814569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-5a0dddaccbea2adadf2d85056ebdf6615bcb57ecf57a34e23d6b535e91a2fca33</originalsourceid><addsrcrecordid>eNpdkcFu2zAMhoVhxZJle4HtYmCXXpxKpCVbu6VFsxZI0QJNz4Is0YMz28okB0Xffk5T7NALCQLfRxD8Gfsm-FIIri-2D6u72yVwgCWCQF7iBzYXGnWOEvVHNudCQV5VUM3Y55R2nItCcvzEZqhASCxxztwmhD_t8Du7pJcw-Gz7HLJ1tD2ln9n14PMx5FPL7g7d2Ob39Y7cmG2jda_OUzrWx70dW9tl9qhTvw9xGiZmSE2IPcX0hZ01tkv09a0v2NP6ent1k2_uf91erTa5wxLGXFruvbfO1WTBeusb8JXkUlHtG6WErF0tS3KNLC0WBOhVLVGSFhYaZxEX7Py0dx_D3wOl0fRtctR1dqBwSAZKwGp6gdIT-uMduguHOEzXGahKKArUUEwUnCgXQ0qRGrOPbW_jixHcHCMwrxGYYwTmLYJJ-n6SWiL6L2gtClUq_Ad5qIF6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872443924</pqid></control><display><type>article</type><title>Looking Beyond Two Frames: End-to-End Multi-Object Tracking Using Spatial and Temporal Transformers</title><source>IEEE Xplore (Online service)</source><creator>Zhu, Tianyu ; Hiller, Markus ; Ehsanpour, Mahsa ; Ma, Rongkai ; Drummond, Tom ; Reid, Ian ; Rezatofighi, Hamid</creator><creatorcontrib>Zhu, Tianyu ; Hiller, Markus ; Ehsanpour, Mahsa ; Ma, Rongkai ; Drummond, Tom ; Reid, Ian ; Rezatofighi, Hamid</creatorcontrib><description>Tracking a time-varying indefinite number of objects in a video sequence over time remains a challenge despite recent advances in the field. Most existing approaches are not able to properly handle multi-object tracking challenges such as occlusion, in part because they ignore long-term temporal information. To address these shortcomings, we present MO3TR: a truly end-to-end Transformer-based online multi-object tracking (MOT) framework that learns to handle occlusions, track initiation and termination without the need for an explicit data association module or any heuristics. MO3TR encodes object interactions into long-term temporal embeddings using a combination of spatial and temporal Transformers, and recursively uses the information jointly with the input data to estimate the states of all tracked objects over time. The spatial attention mechanism enables our framework to learn implicit representations between all the objects and the objects to the measurements, while the temporal attention mechanism focuses on specific parts of past information, allowing our approach to resolve occlusions over multiple frames. Our experiments demonstrate the potential of this new approach, achieving results on par with or better than the current state-of-the-art on multiple MOT metrics for several popular multi-object tracking benchmarks.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2022.3213073</identifier><identifier>PMID: 36215373</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>end-to-end learning ; Feature extraction ; Frames (data processing) ; History ; Multi-object tracking ; Multiple target tracking ; Object recognition ; Occlusion ; pedestrian tracking ; spatio-temporal model ; Task analysis ; Tracking ; transformer ; Transformers ; Visualization</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-11, Vol.45 (11), p.12783-12797</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-5a0dddaccbea2adadf2d85056ebdf6615bcb57ecf57a34e23d6b535e91a2fca33</citedby><cites>FETCH-LOGICAL-c372t-5a0dddaccbea2adadf2d85056ebdf6615bcb57ecf57a34e23d6b535e91a2fca33</cites><orcidid>0000-0002-8659-8773 ; 0000-0002-8133-0102 ; 0000-0002-6735-0553 ; 0000-0001-7790-6423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9914676$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,54783</link.rule.ids></links><search><creatorcontrib>Zhu, Tianyu</creatorcontrib><creatorcontrib>Hiller, Markus</creatorcontrib><creatorcontrib>Ehsanpour, Mahsa</creatorcontrib><creatorcontrib>Ma, Rongkai</creatorcontrib><creatorcontrib>Drummond, Tom</creatorcontrib><creatorcontrib>Reid, Ian</creatorcontrib><creatorcontrib>Rezatofighi, Hamid</creatorcontrib><title>Looking Beyond Two Frames: End-to-End Multi-Object Tracking Using Spatial and Temporal Transformers</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Tracking a time-varying indefinite number of objects in a video sequence over time remains a challenge despite recent advances in the field. Most existing approaches are not able to properly handle multi-object tracking challenges such as occlusion, in part because they ignore long-term temporal information. To address these shortcomings, we present MO3TR: a truly end-to-end Transformer-based online multi-object tracking (MOT) framework that learns to handle occlusions, track initiation and termination without the need for an explicit data association module or any heuristics. MO3TR encodes object interactions into long-term temporal embeddings using a combination of spatial and temporal Transformers, and recursively uses the information jointly with the input data to estimate the states of all tracked objects over time. The spatial attention mechanism enables our framework to learn implicit representations between all the objects and the objects to the measurements, while the temporal attention mechanism focuses on specific parts of past information, allowing our approach to resolve occlusions over multiple frames. Our experiments demonstrate the potential of this new approach, achieving results on par with or better than the current state-of-the-art on multiple MOT metrics for several popular multi-object tracking benchmarks.</description><subject>end-to-end learning</subject><subject>Feature extraction</subject><subject>Frames (data processing)</subject><subject>History</subject><subject>Multi-object tracking</subject><subject>Multiple target tracking</subject><subject>Object recognition</subject><subject>Occlusion</subject><subject>pedestrian tracking</subject><subject>spatio-temporal model</subject><subject>Task analysis</subject><subject>Tracking</subject><subject>transformer</subject><subject>Transformers</subject><subject>Visualization</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkcFu2zAMhoVhxZJle4HtYmCXXpxKpCVbu6VFsxZI0QJNz4Is0YMz28okB0Xffk5T7NALCQLfRxD8Gfsm-FIIri-2D6u72yVwgCWCQF7iBzYXGnWOEvVHNudCQV5VUM3Y55R2nItCcvzEZqhASCxxztwmhD_t8Du7pJcw-Gz7HLJ1tD2ln9n14PMx5FPL7g7d2Ob39Y7cmG2jda_OUzrWx70dW9tl9qhTvw9xGiZmSE2IPcX0hZ01tkv09a0v2NP6ent1k2_uf91erTa5wxLGXFruvbfO1WTBeusb8JXkUlHtG6WErF0tS3KNLC0WBOhVLVGSFhYaZxEX7Py0dx_D3wOl0fRtctR1dqBwSAZKwGp6gdIT-uMduguHOEzXGahKKArUUEwUnCgXQ0qRGrOPbW_jixHcHCMwrxGYYwTmLYJJ-n6SWiL6L2gtClUq_Ad5qIF6</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zhu, Tianyu</creator><creator>Hiller, Markus</creator><creator>Ehsanpour, Mahsa</creator><creator>Ma, Rongkai</creator><creator>Drummond, Tom</creator><creator>Reid, Ian</creator><creator>Rezatofighi, Hamid</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8659-8773</orcidid><orcidid>https://orcid.org/0000-0002-8133-0102</orcidid><orcidid>https://orcid.org/0000-0002-6735-0553</orcidid><orcidid>https://orcid.org/0000-0001-7790-6423</orcidid></search><sort><creationdate>20231101</creationdate><title>Looking Beyond Two Frames: End-to-End Multi-Object Tracking Using Spatial and Temporal Transformers</title><author>Zhu, Tianyu ; Hiller, Markus ; Ehsanpour, Mahsa ; Ma, Rongkai ; Drummond, Tom ; Reid, Ian ; Rezatofighi, Hamid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-5a0dddaccbea2adadf2d85056ebdf6615bcb57ecf57a34e23d6b535e91a2fca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>end-to-end learning</topic><topic>Feature extraction</topic><topic>Frames (data processing)</topic><topic>History</topic><topic>Multi-object tracking</topic><topic>Multiple target tracking</topic><topic>Object recognition</topic><topic>Occlusion</topic><topic>pedestrian tracking</topic><topic>spatio-temporal model</topic><topic>Task analysis</topic><topic>Tracking</topic><topic>transformer</topic><topic>Transformers</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Tianyu</creatorcontrib><creatorcontrib>Hiller, Markus</creatorcontrib><creatorcontrib>Ehsanpour, Mahsa</creatorcontrib><creatorcontrib>Ma, Rongkai</creatorcontrib><creatorcontrib>Drummond, Tom</creatorcontrib><creatorcontrib>Reid, Ian</creatorcontrib><creatorcontrib>Rezatofighi, Hamid</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Tianyu</au><au>Hiller, Markus</au><au>Ehsanpour, Mahsa</au><au>Ma, Rongkai</au><au>Drummond, Tom</au><au>Reid, Ian</au><au>Rezatofighi, Hamid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Looking Beyond Two Frames: End-to-End Multi-Object Tracking Using Spatial and Temporal Transformers</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>45</volume><issue>11</issue><spage>12783</spage><epage>12797</epage><pages>12783-12797</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Tracking a time-varying indefinite number of objects in a video sequence over time remains a challenge despite recent advances in the field. Most existing approaches are not able to properly handle multi-object tracking challenges such as occlusion, in part because they ignore long-term temporal information. To address these shortcomings, we present MO3TR: a truly end-to-end Transformer-based online multi-object tracking (MOT) framework that learns to handle occlusions, track initiation and termination without the need for an explicit data association module or any heuristics. MO3TR encodes object interactions into long-term temporal embeddings using a combination of spatial and temporal Transformers, and recursively uses the information jointly with the input data to estimate the states of all tracked objects over time. The spatial attention mechanism enables our framework to learn implicit representations between all the objects and the objects to the measurements, while the temporal attention mechanism focuses on specific parts of past information, allowing our approach to resolve occlusions over multiple frames. Our experiments demonstrate the potential of this new approach, achieving results on par with or better than the current state-of-the-art on multiple MOT metrics for several popular multi-object tracking benchmarks.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>36215373</pmid><doi>10.1109/TPAMI.2022.3213073</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8659-8773</orcidid><orcidid>https://orcid.org/0000-0002-8133-0102</orcidid><orcidid>https://orcid.org/0000-0002-6735-0553</orcidid><orcidid>https://orcid.org/0000-0001-7790-6423</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2023-11, Vol.45 (11), p.12783-12797 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_proquest_journals_2872443924 |
source | IEEE Xplore (Online service) |
subjects | end-to-end learning Feature extraction Frames (data processing) History Multi-object tracking Multiple target tracking Object recognition Occlusion pedestrian tracking spatio-temporal model Task analysis Tracking transformer Transformers Visualization |
title | Looking Beyond Two Frames: End-to-End Multi-Object Tracking Using Spatial and Temporal Transformers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Looking%20Beyond%20Two%20Frames:%20End-to-End%20Multi-Object%20Tracking%20Using%20Spatial%20and%20Temporal%20Transformers&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Zhu,%20Tianyu&rft.date=2023-11-01&rft.volume=45&rft.issue=11&rft.spage=12783&rft.epage=12797&rft.pages=12783-12797&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2022.3213073&rft_dat=%3Cproquest_cross%3E2723814569%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-5a0dddaccbea2adadf2d85056ebdf6615bcb57ecf57a34e23d6b535e91a2fca33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2872443924&rft_id=info:pmid/36215373&rft_ieee_id=9914676&rfr_iscdi=true |