Loading…
Fluctuating hydrodynamics of an autophoretic particle near a permeable interface
We study the autophoretic motion of a spherical active particle interacting chemically and hydrodynamically with its fluctuating environment in the limit of rapid diffusion and slow viscous flow. Then, the chemical and hydrodynamic fields can be expressed in terms of integrals. The resulting boundar...
Saved in:
Published in: | arXiv.org 2024-11 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Turk, Günther Adhikari, Ronojoy Singh, Rajesh |
description | We study the autophoretic motion of a spherical active particle interacting chemically and hydrodynamically with its fluctuating environment in the limit of rapid diffusion and slow viscous flow. Then, the chemical and hydrodynamic fields can be expressed in terms of integrals. The resulting boundary-domain integral equations provide a direct way of obtaining the traction on the particle, requiring the solution of linear integral equations. An exact solution for the chemical and hydrodynamic problems is obtained for a particle in an unbounded domain. For motion near boundaries, we provide corrections to the unbounded solutions in terms of chemical and hydrodynamic Green's functions, preserving the dissipative nature of autophoresis in a viscous fluid for all physical configurations. Using this, we give the fully stochastic update equations for the Brownian trajectory of an autophoretic particle in a complex environment. First, we analyse the Brownian dynamics of particles capable of complex motion in the bulk. We then introduce a chemically permeable planar surface of two immiscible liquids in the vicinity of the particle and provide explicit solutions to the chemo-hydrodynamics of this system. Finally, we study the case of an isotropically phoretic particle hovering above an interface as a function of interfacial solute permeability and viscosity contrast. |
doi_str_mv | 10.48550/arxiv.2310.01572 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2872511354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872511354</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-9a4b399fb6f9f8d90436ba476e1f0280bc5cad57c06c840e4670a4be00f425203</originalsourceid><addsrcrecordid>eNotj01LAzEURYMgWGp_gLuA66kvn5NZSrEqFOqi-_Imk9gp02TMZMT-ewO6OnDg3ssl5IHBWhql4AnTT_-95qIIYKrmN2TBhWCVkZzfkdU0nQGA65orJRbkYzvMNs-Y-_BJT9cuxe4a8NLbiUZPMVCccxxPMbncWzpiKhgcDQ4TRTq6dHHYFtGH7JJH6-7Jrcdhcqt_Lslh-3LYvFW7_ev75nlXoeKyalC2oml8q33jTdeAFLpFWWvHPHADrVUWO1Vb0NZIcFLXUCIOwEuuOIglefyrHVP8mt2Uj-c4p1AWj9yUb4wJJcUvmUxQ_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872511354</pqid></control><display><type>article</type><title>Fluctuating hydrodynamics of an autophoretic particle near a permeable interface</title><source>Publicly Available Content Database</source><creator>Turk, Günther ; Adhikari, Ronojoy ; Singh, Rajesh</creator><creatorcontrib>Turk, Günther ; Adhikari, Ronojoy ; Singh, Rajesh</creatorcontrib><description>We study the autophoretic motion of a spherical active particle interacting chemically and hydrodynamically with its fluctuating environment in the limit of rapid diffusion and slow viscous flow. Then, the chemical and hydrodynamic fields can be expressed in terms of integrals. The resulting boundary-domain integral equations provide a direct way of obtaining the traction on the particle, requiring the solution of linear integral equations. An exact solution for the chemical and hydrodynamic problems is obtained for a particle in an unbounded domain. For motion near boundaries, we provide corrections to the unbounded solutions in terms of chemical and hydrodynamic Green's functions, preserving the dissipative nature of autophoresis in a viscous fluid for all physical configurations. Using this, we give the fully stochastic update equations for the Brownian trajectory of an autophoretic particle in a complex environment. First, we analyse the Brownian dynamics of particles capable of complex motion in the bulk. We then introduce a chemically permeable planar surface of two immiscible liquids in the vicinity of the particle and provide explicit solutions to the chemo-hydrodynamics of this system. Finally, we study the case of an isotropically phoretic particle hovering above an interface as a function of interfacial solute permeability and viscosity contrast.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2310.01572</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundaries ; Diffusion rate ; Exact solutions ; Geometric accuracy ; Green's functions ; Integral equations ; Nanoparticles ; Viscosity ratio ; Viscous flow ; Viscous fluids</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2872511354?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Turk, Günther</creatorcontrib><creatorcontrib>Adhikari, Ronojoy</creatorcontrib><creatorcontrib>Singh, Rajesh</creatorcontrib><title>Fluctuating hydrodynamics of an autophoretic particle near a permeable interface</title><title>arXiv.org</title><description>We study the autophoretic motion of a spherical active particle interacting chemically and hydrodynamically with its fluctuating environment in the limit of rapid diffusion and slow viscous flow. Then, the chemical and hydrodynamic fields can be expressed in terms of integrals. The resulting boundary-domain integral equations provide a direct way of obtaining the traction on the particle, requiring the solution of linear integral equations. An exact solution for the chemical and hydrodynamic problems is obtained for a particle in an unbounded domain. For motion near boundaries, we provide corrections to the unbounded solutions in terms of chemical and hydrodynamic Green's functions, preserving the dissipative nature of autophoresis in a viscous fluid for all physical configurations. Using this, we give the fully stochastic update equations for the Brownian trajectory of an autophoretic particle in a complex environment. First, we analyse the Brownian dynamics of particles capable of complex motion in the bulk. We then introduce a chemically permeable planar surface of two immiscible liquids in the vicinity of the particle and provide explicit solutions to the chemo-hydrodynamics of this system. Finally, we study the case of an isotropically phoretic particle hovering above an interface as a function of interfacial solute permeability and viscosity contrast.</description><subject>Boundaries</subject><subject>Diffusion rate</subject><subject>Exact solutions</subject><subject>Geometric accuracy</subject><subject>Green's functions</subject><subject>Integral equations</subject><subject>Nanoparticles</subject><subject>Viscosity ratio</subject><subject>Viscous flow</subject><subject>Viscous fluids</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj01LAzEURYMgWGp_gLuA66kvn5NZSrEqFOqi-_Imk9gp02TMZMT-ewO6OnDg3ssl5IHBWhql4AnTT_-95qIIYKrmN2TBhWCVkZzfkdU0nQGA65orJRbkYzvMNs-Y-_BJT9cuxe4a8NLbiUZPMVCccxxPMbncWzpiKhgcDQ4TRTq6dHHYFtGH7JJH6-7Jrcdhcqt_Lslh-3LYvFW7_ev75nlXoeKyalC2oml8q33jTdeAFLpFWWvHPHADrVUWO1Vb0NZIcFLXUCIOwEuuOIglefyrHVP8mt2Uj-c4p1AWj9yUb4wJJcUvmUxQ_Q</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Turk, Günther</creator><creator>Adhikari, Ronojoy</creator><creator>Singh, Rajesh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241101</creationdate><title>Fluctuating hydrodynamics of an autophoretic particle near a permeable interface</title><author>Turk, Günther ; Adhikari, Ronojoy ; Singh, Rajesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-9a4b399fb6f9f8d90436ba476e1f0280bc5cad57c06c840e4670a4be00f425203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundaries</topic><topic>Diffusion rate</topic><topic>Exact solutions</topic><topic>Geometric accuracy</topic><topic>Green's functions</topic><topic>Integral equations</topic><topic>Nanoparticles</topic><topic>Viscosity ratio</topic><topic>Viscous flow</topic><topic>Viscous fluids</topic><toplevel>online_resources</toplevel><creatorcontrib>Turk, Günther</creatorcontrib><creatorcontrib>Adhikari, Ronojoy</creatorcontrib><creatorcontrib>Singh, Rajesh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turk, Günther</au><au>Adhikari, Ronojoy</au><au>Singh, Rajesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluctuating hydrodynamics of an autophoretic particle near a permeable interface</atitle><jtitle>arXiv.org</jtitle><date>2024-11-01</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We study the autophoretic motion of a spherical active particle interacting chemically and hydrodynamically with its fluctuating environment in the limit of rapid diffusion and slow viscous flow. Then, the chemical and hydrodynamic fields can be expressed in terms of integrals. The resulting boundary-domain integral equations provide a direct way of obtaining the traction on the particle, requiring the solution of linear integral equations. An exact solution for the chemical and hydrodynamic problems is obtained for a particle in an unbounded domain. For motion near boundaries, we provide corrections to the unbounded solutions in terms of chemical and hydrodynamic Green's functions, preserving the dissipative nature of autophoresis in a viscous fluid for all physical configurations. Using this, we give the fully stochastic update equations for the Brownian trajectory of an autophoretic particle in a complex environment. First, we analyse the Brownian dynamics of particles capable of complex motion in the bulk. We then introduce a chemically permeable planar surface of two immiscible liquids in the vicinity of the particle and provide explicit solutions to the chemo-hydrodynamics of this system. Finally, we study the case of an isotropically phoretic particle hovering above an interface as a function of interfacial solute permeability and viscosity contrast.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2310.01572</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2872511354 |
source | Publicly Available Content Database |
subjects | Boundaries Diffusion rate Exact solutions Geometric accuracy Green's functions Integral equations Nanoparticles Viscosity ratio Viscous flow Viscous fluids |
title | Fluctuating hydrodynamics of an autophoretic particle near a permeable interface |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluctuating%20hydrodynamics%20of%20an%20autophoretic%20particle%20near%20a%20permeable%20interface&rft.jtitle=arXiv.org&rft.au=Turk,%20G%C3%BCnther&rft.date=2024-11-01&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2310.01572&rft_dat=%3Cproquest%3E2872511354%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-9a4b399fb6f9f8d90436ba476e1f0280bc5cad57c06c840e4670a4be00f425203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2872511354&rft_id=info:pmid/&rfr_iscdi=true |