Loading…

MIDDAG: Where Does Our News Go? Investigating Information Diffusion via Community-Level Information Pathways

We present MIDDAG, an intuitive, interactive system that visualizes the information propagation paths on social media triggered by COVID-19-related news articles accompanied by comprehensive insights, including user/community susceptibility level, as well as events and popular opinions raised by the...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-02
Main Authors: Ma, Mingyu Derek, Taylor, Alexander K, Wen, Nuan, Liu, Yanchen, Kung, Po-Nien, Qin, Wenna, Wen, Shicheng, Zhou, Azure, Yang, Diyi, Ma, Xuezhe, Peng, Nanyun, Wang, Wei
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ma, Mingyu Derek
Taylor, Alexander K
Wen, Nuan
Liu, Yanchen
Kung, Po-Nien
Qin, Wenna
Wen, Shicheng
Zhou, Azure
Yang, Diyi
Ma, Xuezhe
Peng, Nanyun
Wang, Wei
description We present MIDDAG, an intuitive, interactive system that visualizes the information propagation paths on social media triggered by COVID-19-related news articles accompanied by comprehensive insights, including user/community susceptibility level, as well as events and popular opinions raised by the crowd while propagating the information. Besides discovering information flow patterns among users, we construct communities among users and develop the propagation forecasting capability, enabling tracing and understanding of how information is disseminated at a higher level.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2873070699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873070699</sourcerecordid><originalsourceid>FETCH-proquest_journals_28730706993</originalsourceid><addsrcrecordid>eNqNjU0LgjAAhkcQJOV_GHQW1pZfXSK0TOjrEHSUHaZOdKvNKf77DLp06_Q-L-8D7wRYmJCVE6wxngFb6wohhD0fuy6xQH1O43iXbOCjZIrBWDINr0bBC-s1TOQWpqJjuuUFbbkoxpZL1YwsBYx5nhv9oY5TGMmmMYK3g3NiHat_zBtty54OegGmOa01s785B8vD_h4dnaeSLzPeZJU0SoxThgOfIB95YUj-s96_VkiP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873070699</pqid></control><display><type>article</type><title>MIDDAG: Where Does Our News Go? Investigating Information Diffusion via Community-Level Information Pathways</title><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Ma, Mingyu Derek ; Taylor, Alexander K ; Wen, Nuan ; Liu, Yanchen ; Kung, Po-Nien ; Qin, Wenna ; Wen, Shicheng ; Zhou, Azure ; Yang, Diyi ; Ma, Xuezhe ; Peng, Nanyun ; Wang, Wei</creator><creatorcontrib>Ma, Mingyu Derek ; Taylor, Alexander K ; Wen, Nuan ; Liu, Yanchen ; Kung, Po-Nien ; Qin, Wenna ; Wen, Shicheng ; Zhou, Azure ; Yang, Diyi ; Ma, Xuezhe ; Peng, Nanyun ; Wang, Wei</creatorcontrib><description>We present MIDDAG, an intuitive, interactive system that visualizes the information propagation paths on social media triggered by COVID-19-related news articles accompanied by comprehensive insights, including user/community susceptibility level, as well as events and popular opinions raised by the crowd while propagating the information. Besides discovering information flow patterns among users, we construct communities among users and develop the propagation forecasting capability, enabling tracing and understanding of how information is disseminated at a higher level.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Flow distribution ; Information dissemination ; Information flow ; Interactive systems</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2873070699?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,38516,43895,44590</link.rule.ids></links><search><creatorcontrib>Ma, Mingyu Derek</creatorcontrib><creatorcontrib>Taylor, Alexander K</creatorcontrib><creatorcontrib>Wen, Nuan</creatorcontrib><creatorcontrib>Liu, Yanchen</creatorcontrib><creatorcontrib>Kung, Po-Nien</creatorcontrib><creatorcontrib>Qin, Wenna</creatorcontrib><creatorcontrib>Wen, Shicheng</creatorcontrib><creatorcontrib>Zhou, Azure</creatorcontrib><creatorcontrib>Yang, Diyi</creatorcontrib><creatorcontrib>Ma, Xuezhe</creatorcontrib><creatorcontrib>Peng, Nanyun</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><title>MIDDAG: Where Does Our News Go? Investigating Information Diffusion via Community-Level Information Pathways</title><title>arXiv.org</title><description>We present MIDDAG, an intuitive, interactive system that visualizes the information propagation paths on social media triggered by COVID-19-related news articles accompanied by comprehensive insights, including user/community susceptibility level, as well as events and popular opinions raised by the crowd while propagating the information. Besides discovering information flow patterns among users, we construct communities among users and develop the propagation forecasting capability, enabling tracing and understanding of how information is disseminated at a higher level.</description><subject>Flow distribution</subject><subject>Information dissemination</subject><subject>Information flow</subject><subject>Interactive systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNqNjU0LgjAAhkcQJOV_GHQW1pZfXSK0TOjrEHSUHaZOdKvNKf77DLp06_Q-L-8D7wRYmJCVE6wxngFb6wohhD0fuy6xQH1O43iXbOCjZIrBWDINr0bBC-s1TOQWpqJjuuUFbbkoxpZL1YwsBYx5nhv9oY5TGMmmMYK3g3NiHat_zBtty54OegGmOa01s785B8vD_h4dnaeSLzPeZJU0SoxThgOfIB95YUj-s96_VkiP</recordid><startdate>20240220</startdate><enddate>20240220</enddate><creator>Ma, Mingyu Derek</creator><creator>Taylor, Alexander K</creator><creator>Wen, Nuan</creator><creator>Liu, Yanchen</creator><creator>Kung, Po-Nien</creator><creator>Qin, Wenna</creator><creator>Wen, Shicheng</creator><creator>Zhou, Azure</creator><creator>Yang, Diyi</creator><creator>Ma, Xuezhe</creator><creator>Peng, Nanyun</creator><creator>Wang, Wei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240220</creationdate><title>MIDDAG: Where Does Our News Go? Investigating Information Diffusion via Community-Level Information Pathways</title><author>Ma, Mingyu Derek ; Taylor, Alexander K ; Wen, Nuan ; Liu, Yanchen ; Kung, Po-Nien ; Qin, Wenna ; Wen, Shicheng ; Zhou, Azure ; Yang, Diyi ; Ma, Xuezhe ; Peng, Nanyun ; Wang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28730706993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Flow distribution</topic><topic>Information dissemination</topic><topic>Information flow</topic><topic>Interactive systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Ma, Mingyu Derek</creatorcontrib><creatorcontrib>Taylor, Alexander K</creatorcontrib><creatorcontrib>Wen, Nuan</creatorcontrib><creatorcontrib>Liu, Yanchen</creatorcontrib><creatorcontrib>Kung, Po-Nien</creatorcontrib><creatorcontrib>Qin, Wenna</creatorcontrib><creatorcontrib>Wen, Shicheng</creatorcontrib><creatorcontrib>Zhou, Azure</creatorcontrib><creatorcontrib>Yang, Diyi</creatorcontrib><creatorcontrib>Ma, Xuezhe</creatorcontrib><creatorcontrib>Peng, Nanyun</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Mingyu Derek</au><au>Taylor, Alexander K</au><au>Wen, Nuan</au><au>Liu, Yanchen</au><au>Kung, Po-Nien</au><au>Qin, Wenna</au><au>Wen, Shicheng</au><au>Zhou, Azure</au><au>Yang, Diyi</au><au>Ma, Xuezhe</au><au>Peng, Nanyun</au><au>Wang, Wei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>MIDDAG: Where Does Our News Go? Investigating Information Diffusion via Community-Level Information Pathways</atitle><jtitle>arXiv.org</jtitle><date>2024-02-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present MIDDAG, an intuitive, interactive system that visualizes the information propagation paths on social media triggered by COVID-19-related news articles accompanied by comprehensive insights, including user/community susceptibility level, as well as events and popular opinions raised by the crowd while propagating the information. Besides discovering information flow patterns among users, we construct communities among users and develop the propagation forecasting capability, enabling tracing and understanding of how information is disseminated at a higher level.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2873070699
source Publicly Available Content Database; Coronavirus Research Database
subjects Flow distribution
Information dissemination
Information flow
Interactive systems
title MIDDAG: Where Does Our News Go? Investigating Information Diffusion via Community-Level Information Pathways
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A24%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=MIDDAG:%20Where%20Does%20Our%20News%20Go?%20Investigating%20Information%20Diffusion%20via%20Community-Level%20Information%20Pathways&rft.jtitle=arXiv.org&rft.au=Ma,%20Mingyu%20Derek&rft.date=2024-02-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2873070699%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28730706993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2873070699&rft_id=info:pmid/&rfr_iscdi=true