Loading…
MIDDAG: Where Does Our News Go? Investigating Information Diffusion via Community-Level Information Pathways
We present MIDDAG, an intuitive, interactive system that visualizes the information propagation paths on social media triggered by COVID-19-related news articles accompanied by comprehensive insights, including user/community susceptibility level, as well as events and popular opinions raised by the...
Saved in:
Published in: | arXiv.org 2024-02 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ma, Mingyu Derek Taylor, Alexander K Wen, Nuan Liu, Yanchen Kung, Po-Nien Qin, Wenna Wen, Shicheng Zhou, Azure Yang, Diyi Ma, Xuezhe Peng, Nanyun Wang, Wei |
description | We present MIDDAG, an intuitive, interactive system that visualizes the information propagation paths on social media triggered by COVID-19-related news articles accompanied by comprehensive insights, including user/community susceptibility level, as well as events and popular opinions raised by the crowd while propagating the information. Besides discovering information flow patterns among users, we construct communities among users and develop the propagation forecasting capability, enabling tracing and understanding of how information is disseminated at a higher level. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2873070699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873070699</sourcerecordid><originalsourceid>FETCH-proquest_journals_28730706993</originalsourceid><addsrcrecordid>eNqNjU0LgjAAhkcQJOV_GHQW1pZfXSK0TOjrEHSUHaZOdKvNKf77DLp06_Q-L-8D7wRYmJCVE6wxngFb6wohhD0fuy6xQH1O43iXbOCjZIrBWDINr0bBC-s1TOQWpqJjuuUFbbkoxpZL1YwsBYx5nhv9oY5TGMmmMYK3g3NiHat_zBtty54OegGmOa01s785B8vD_h4dnaeSLzPeZJU0SoxThgOfIB95YUj-s96_VkiP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873070699</pqid></control><display><type>article</type><title>MIDDAG: Where Does Our News Go? Investigating Information Diffusion via Community-Level Information Pathways</title><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Ma, Mingyu Derek ; Taylor, Alexander K ; Wen, Nuan ; Liu, Yanchen ; Kung, Po-Nien ; Qin, Wenna ; Wen, Shicheng ; Zhou, Azure ; Yang, Diyi ; Ma, Xuezhe ; Peng, Nanyun ; Wang, Wei</creator><creatorcontrib>Ma, Mingyu Derek ; Taylor, Alexander K ; Wen, Nuan ; Liu, Yanchen ; Kung, Po-Nien ; Qin, Wenna ; Wen, Shicheng ; Zhou, Azure ; Yang, Diyi ; Ma, Xuezhe ; Peng, Nanyun ; Wang, Wei</creatorcontrib><description>We present MIDDAG, an intuitive, interactive system that visualizes the information propagation paths on social media triggered by COVID-19-related news articles accompanied by comprehensive insights, including user/community susceptibility level, as well as events and popular opinions raised by the crowd while propagating the information. Besides discovering information flow patterns among users, we construct communities among users and develop the propagation forecasting capability, enabling tracing and understanding of how information is disseminated at a higher level.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Flow distribution ; Information dissemination ; Information flow ; Interactive systems</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2873070699?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,38516,43895,44590</link.rule.ids></links><search><creatorcontrib>Ma, Mingyu Derek</creatorcontrib><creatorcontrib>Taylor, Alexander K</creatorcontrib><creatorcontrib>Wen, Nuan</creatorcontrib><creatorcontrib>Liu, Yanchen</creatorcontrib><creatorcontrib>Kung, Po-Nien</creatorcontrib><creatorcontrib>Qin, Wenna</creatorcontrib><creatorcontrib>Wen, Shicheng</creatorcontrib><creatorcontrib>Zhou, Azure</creatorcontrib><creatorcontrib>Yang, Diyi</creatorcontrib><creatorcontrib>Ma, Xuezhe</creatorcontrib><creatorcontrib>Peng, Nanyun</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><title>MIDDAG: Where Does Our News Go? Investigating Information Diffusion via Community-Level Information Pathways</title><title>arXiv.org</title><description>We present MIDDAG, an intuitive, interactive system that visualizes the information propagation paths on social media triggered by COVID-19-related news articles accompanied by comprehensive insights, including user/community susceptibility level, as well as events and popular opinions raised by the crowd while propagating the information. Besides discovering information flow patterns among users, we construct communities among users and develop the propagation forecasting capability, enabling tracing and understanding of how information is disseminated at a higher level.</description><subject>Flow distribution</subject><subject>Information dissemination</subject><subject>Information flow</subject><subject>Interactive systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNqNjU0LgjAAhkcQJOV_GHQW1pZfXSK0TOjrEHSUHaZOdKvNKf77DLp06_Q-L-8D7wRYmJCVE6wxngFb6wohhD0fuy6xQH1O43iXbOCjZIrBWDINr0bBC-s1TOQWpqJjuuUFbbkoxpZL1YwsBYx5nhv9oY5TGMmmMYK3g3NiHat_zBtty54OegGmOa01s785B8vD_h4dnaeSLzPeZJU0SoxThgOfIB95YUj-s96_VkiP</recordid><startdate>20240220</startdate><enddate>20240220</enddate><creator>Ma, Mingyu Derek</creator><creator>Taylor, Alexander K</creator><creator>Wen, Nuan</creator><creator>Liu, Yanchen</creator><creator>Kung, Po-Nien</creator><creator>Qin, Wenna</creator><creator>Wen, Shicheng</creator><creator>Zhou, Azure</creator><creator>Yang, Diyi</creator><creator>Ma, Xuezhe</creator><creator>Peng, Nanyun</creator><creator>Wang, Wei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240220</creationdate><title>MIDDAG: Where Does Our News Go? Investigating Information Diffusion via Community-Level Information Pathways</title><author>Ma, Mingyu Derek ; Taylor, Alexander K ; Wen, Nuan ; Liu, Yanchen ; Kung, Po-Nien ; Qin, Wenna ; Wen, Shicheng ; Zhou, Azure ; Yang, Diyi ; Ma, Xuezhe ; Peng, Nanyun ; Wang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28730706993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Flow distribution</topic><topic>Information dissemination</topic><topic>Information flow</topic><topic>Interactive systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Ma, Mingyu Derek</creatorcontrib><creatorcontrib>Taylor, Alexander K</creatorcontrib><creatorcontrib>Wen, Nuan</creatorcontrib><creatorcontrib>Liu, Yanchen</creatorcontrib><creatorcontrib>Kung, Po-Nien</creatorcontrib><creatorcontrib>Qin, Wenna</creatorcontrib><creatorcontrib>Wen, Shicheng</creatorcontrib><creatorcontrib>Zhou, Azure</creatorcontrib><creatorcontrib>Yang, Diyi</creatorcontrib><creatorcontrib>Ma, Xuezhe</creatorcontrib><creatorcontrib>Peng, Nanyun</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Mingyu Derek</au><au>Taylor, Alexander K</au><au>Wen, Nuan</au><au>Liu, Yanchen</au><au>Kung, Po-Nien</au><au>Qin, Wenna</au><au>Wen, Shicheng</au><au>Zhou, Azure</au><au>Yang, Diyi</au><au>Ma, Xuezhe</au><au>Peng, Nanyun</au><au>Wang, Wei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>MIDDAG: Where Does Our News Go? Investigating Information Diffusion via Community-Level Information Pathways</atitle><jtitle>arXiv.org</jtitle><date>2024-02-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present MIDDAG, an intuitive, interactive system that visualizes the information propagation paths on social media triggered by COVID-19-related news articles accompanied by comprehensive insights, including user/community susceptibility level, as well as events and popular opinions raised by the crowd while propagating the information. Besides discovering information flow patterns among users, we construct communities among users and develop the propagation forecasting capability, enabling tracing and understanding of how information is disseminated at a higher level.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2873070699 |
source | Publicly Available Content Database; Coronavirus Research Database |
subjects | Flow distribution Information dissemination Information flow Interactive systems |
title | MIDDAG: Where Does Our News Go? Investigating Information Diffusion via Community-Level Information Pathways |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A24%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=MIDDAG:%20Where%20Does%20Our%20News%20Go?%20Investigating%20Information%20Diffusion%20via%20Community-Level%20Information%20Pathways&rft.jtitle=arXiv.org&rft.au=Ma,%20Mingyu%20Derek&rft.date=2024-02-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2873070699%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28730706993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2873070699&rft_id=info:pmid/&rfr_iscdi=true |