Loading…

On modelling of surface tension of CMC‐α‐Fe2O3 nanoparticles by fuzzy‐hybrid approach: A comparison study

Surface tension is one of the most important rheological parameters of nanoliquids. It influences the thermophysical and mass transfer properties of nanostructures. Accurate estimation of the surface tension from operating variables is critical for determining optimal production processes. However,...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of chemical engineering 2023-11, Vol.101 (11), p.6446-6454
Main Authors: Gonce Kocken, Hale, Insel, Mert Akin, Temelcan, Gizem, Karakuş, Selcan, Albayrak, Inci
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6454
container_issue 11
container_start_page 6446
container_title Canadian journal of chemical engineering
container_volume 101
creator Gonce Kocken, Hale
Insel, Mert Akin
Temelcan, Gizem
Karakuş, Selcan
Albayrak, Inci
description Surface tension is one of the most important rheological parameters of nanoliquids. It influences the thermophysical and mass transfer properties of nanostructures. Accurate estimation of the surface tension from operating variables is critical for determining optimal production processes. However, the challenges of producing nanoparticles and measuring their properties introduce experimental errors in the data used for mathematical modelling. Crisp regression approaches provide adequate representation of the data, but they do not provide information about the experimental uncertainty. In this study, a fuzzy‐hybrid approach is proposed for mathematical modelling of surface tension of carboxymethyl cellulose/chitosan‐α‐Fe2O3 nanoparticles. Then, the proposed model is compared with a crisp model from a previous study. Error analysis is conducted to validate the constructed fuzzy model. It is observed that the fuzzy‐hybrid modelling approach has yielded significantly lower error values (a 60%–90% improvement in all error metrics on average), and thus, it is superior to the crisp approach. This study contributes to the subject of modelling rheological properties. It is shown that the fuzzy‐hybrid approach has impressive potential to be utilized for modelling the rheological properties of nanostructures.
doi_str_mv 10.1002/cjce.24884
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2873071375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873071375</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2254-583f853bb61fbb3c7bb5c0429b73fa1ac2cf09c32d0d199232d500909c8a11333</originalsourceid><addsrcrecordid>eNotUEtOwzAQtRBIlMKGE1hinTK2E2Kzq6KWj4q6AYmdZTs2TZUmIU6E0hVH4CpchENwEtyWzcybN09vRg-hSwITAkCvzdrYCY05j4_QiAgmIiDi9RiNAIBHMbD4FJ15vw4jhZiMULOs8KbObVkW1RuuHfZ965SxuLOVL-pqR2VP2e_n1893KHNLlwxXqqob1XaFKa3HesCu326HsF4Nui1yrJqmrZVZ3eIpNvUmSAsfrHzX58M5OnGq9Pbiv4_Ry3z2nN1Hi-XdQzZdRA2lSRwlnDmeMK1viNOamVTrxEBMhU6ZU0QZahwIw2gOORGCBpAAiEBxRQhjbIyuDr7hlffe-k6u676twklJecogJSxNgoocVB9FaQfZtMVGtYMkIHdxyl2cch-nzB6z2R6xP4LlbhY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873071375</pqid></control><display><type>article</type><title>On modelling of surface tension of CMC‐α‐Fe2O3 nanoparticles by fuzzy‐hybrid approach: A comparison study</title><source>Wiley</source><creator>Gonce Kocken, Hale ; Insel, Mert Akin ; Temelcan, Gizem ; Karakuş, Selcan ; Albayrak, Inci</creator><creatorcontrib>Gonce Kocken, Hale ; Insel, Mert Akin ; Temelcan, Gizem ; Karakuş, Selcan ; Albayrak, Inci</creatorcontrib><description>Surface tension is one of the most important rheological parameters of nanoliquids. It influences the thermophysical and mass transfer properties of nanostructures. Accurate estimation of the surface tension from operating variables is critical for determining optimal production processes. However, the challenges of producing nanoparticles and measuring their properties introduce experimental errors in the data used for mathematical modelling. Crisp regression approaches provide adequate representation of the data, but they do not provide information about the experimental uncertainty. In this study, a fuzzy‐hybrid approach is proposed for mathematical modelling of surface tension of carboxymethyl cellulose/chitosan‐α‐Fe2O3 nanoparticles. Then, the proposed model is compared with a crisp model from a previous study. Error analysis is conducted to validate the constructed fuzzy model. It is observed that the fuzzy‐hybrid modelling approach has yielded significantly lower error values (a 60%–90% improvement in all error metrics on average), and thus, it is superior to the crisp approach. This study contributes to the subject of modelling rheological properties. It is shown that the fuzzy‐hybrid approach has impressive potential to be utilized for modelling the rheological properties of nanostructures.</description><identifier>ISSN: 0008-4034</identifier><identifier>EISSN: 1939-019X</identifier><identifier>DOI: 10.1002/cjce.24884</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Carboxymethyl cellulose ; Chitosan ; Error analysis ; fuzzy regression ; Mass transfer ; mathematical modelling ; Mathematical models ; nanomaterials ; Nanoparticles ; Nanostructure ; Rheological properties ; Rheology ; Surface tension ; Thermophysical properties</subject><ispartof>Canadian journal of chemical engineering, 2023-11, Vol.101 (11), p.6446-6454</ispartof><rights>2023 Canadian Society for Chemical Engineering.</rights><rights>2023 Canadian Society for Chemical Engineering</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4347-1190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gonce Kocken, Hale</creatorcontrib><creatorcontrib>Insel, Mert Akin</creatorcontrib><creatorcontrib>Temelcan, Gizem</creatorcontrib><creatorcontrib>Karakuş, Selcan</creatorcontrib><creatorcontrib>Albayrak, Inci</creatorcontrib><title>On modelling of surface tension of CMC‐α‐Fe2O3 nanoparticles by fuzzy‐hybrid approach: A comparison study</title><title>Canadian journal of chemical engineering</title><description>Surface tension is one of the most important rheological parameters of nanoliquids. It influences the thermophysical and mass transfer properties of nanostructures. Accurate estimation of the surface tension from operating variables is critical for determining optimal production processes. However, the challenges of producing nanoparticles and measuring their properties introduce experimental errors in the data used for mathematical modelling. Crisp regression approaches provide adequate representation of the data, but they do not provide information about the experimental uncertainty. In this study, a fuzzy‐hybrid approach is proposed for mathematical modelling of surface tension of carboxymethyl cellulose/chitosan‐α‐Fe2O3 nanoparticles. Then, the proposed model is compared with a crisp model from a previous study. Error analysis is conducted to validate the constructed fuzzy model. It is observed that the fuzzy‐hybrid modelling approach has yielded significantly lower error values (a 60%–90% improvement in all error metrics on average), and thus, it is superior to the crisp approach. This study contributes to the subject of modelling rheological properties. It is shown that the fuzzy‐hybrid approach has impressive potential to be utilized for modelling the rheological properties of nanostructures.</description><subject>Carboxymethyl cellulose</subject><subject>Chitosan</subject><subject>Error analysis</subject><subject>fuzzy regression</subject><subject>Mass transfer</subject><subject>mathematical modelling</subject><subject>Mathematical models</subject><subject>nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Surface tension</subject><subject>Thermophysical properties</subject><issn>0008-4034</issn><issn>1939-019X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotUEtOwzAQtRBIlMKGE1hinTK2E2Kzq6KWj4q6AYmdZTs2TZUmIU6E0hVH4CpchENwEtyWzcybN09vRg-hSwITAkCvzdrYCY05j4_QiAgmIiDi9RiNAIBHMbD4FJ15vw4jhZiMULOs8KbObVkW1RuuHfZ965SxuLOVL-pqR2VP2e_n1893KHNLlwxXqqob1XaFKa3HesCu326HsF4Nui1yrJqmrZVZ3eIpNvUmSAsfrHzX58M5OnGq9Pbiv4_Ry3z2nN1Hi-XdQzZdRA2lSRwlnDmeMK1viNOamVTrxEBMhU6ZU0QZahwIw2gOORGCBpAAiEBxRQhjbIyuDr7hlffe-k6u676twklJecogJSxNgoocVB9FaQfZtMVGtYMkIHdxyl2cch-nzB6z2R6xP4LlbhY</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Gonce Kocken, Hale</creator><creator>Insel, Mert Akin</creator><creator>Temelcan, Gizem</creator><creator>Karakuş, Selcan</creator><creator>Albayrak, Inci</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4347-1190</orcidid></search><sort><creationdate>202311</creationdate><title>On modelling of surface tension of CMC‐α‐Fe2O3 nanoparticles by fuzzy‐hybrid approach: A comparison study</title><author>Gonce Kocken, Hale ; Insel, Mert Akin ; Temelcan, Gizem ; Karakuş, Selcan ; Albayrak, Inci</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2254-583f853bb61fbb3c7bb5c0429b73fa1ac2cf09c32d0d199232d500909c8a11333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carboxymethyl cellulose</topic><topic>Chitosan</topic><topic>Error analysis</topic><topic>fuzzy regression</topic><topic>Mass transfer</topic><topic>mathematical modelling</topic><topic>Mathematical models</topic><topic>nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Surface tension</topic><topic>Thermophysical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonce Kocken, Hale</creatorcontrib><creatorcontrib>Insel, Mert Akin</creatorcontrib><creatorcontrib>Temelcan, Gizem</creatorcontrib><creatorcontrib>Karakuş, Selcan</creatorcontrib><creatorcontrib>Albayrak, Inci</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Canadian journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonce Kocken, Hale</au><au>Insel, Mert Akin</au><au>Temelcan, Gizem</au><au>Karakuş, Selcan</au><au>Albayrak, Inci</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On modelling of surface tension of CMC‐α‐Fe2O3 nanoparticles by fuzzy‐hybrid approach: A comparison study</atitle><jtitle>Canadian journal of chemical engineering</jtitle><date>2023-11</date><risdate>2023</risdate><volume>101</volume><issue>11</issue><spage>6446</spage><epage>6454</epage><pages>6446-6454</pages><issn>0008-4034</issn><eissn>1939-019X</eissn><abstract>Surface tension is one of the most important rheological parameters of nanoliquids. It influences the thermophysical and mass transfer properties of nanostructures. Accurate estimation of the surface tension from operating variables is critical for determining optimal production processes. However, the challenges of producing nanoparticles and measuring their properties introduce experimental errors in the data used for mathematical modelling. Crisp regression approaches provide adequate representation of the data, but they do not provide information about the experimental uncertainty. In this study, a fuzzy‐hybrid approach is proposed for mathematical modelling of surface tension of carboxymethyl cellulose/chitosan‐α‐Fe2O3 nanoparticles. Then, the proposed model is compared with a crisp model from a previous study. Error analysis is conducted to validate the constructed fuzzy model. It is observed that the fuzzy‐hybrid modelling approach has yielded significantly lower error values (a 60%–90% improvement in all error metrics on average), and thus, it is superior to the crisp approach. This study contributes to the subject of modelling rheological properties. It is shown that the fuzzy‐hybrid approach has impressive potential to be utilized for modelling the rheological properties of nanostructures.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/cjce.24884</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4347-1190</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-4034
ispartof Canadian journal of chemical engineering, 2023-11, Vol.101 (11), p.6446-6454
issn 0008-4034
1939-019X
language eng
recordid cdi_proquest_journals_2873071375
source Wiley
subjects Carboxymethyl cellulose
Chitosan
Error analysis
fuzzy regression
Mass transfer
mathematical modelling
Mathematical models
nanomaterials
Nanoparticles
Nanostructure
Rheological properties
Rheology
Surface tension
Thermophysical properties
title On modelling of surface tension of CMC‐α‐Fe2O3 nanoparticles by fuzzy‐hybrid approach: A comparison study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A17%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20modelling%20of%20surface%20tension%20of%20CMC%E2%80%90%CE%B1%E2%80%90Fe2O3%20nanoparticles%20by%20fuzzy%E2%80%90hybrid%20approach:%20A%20comparison%20study&rft.jtitle=Canadian%20journal%20of%20chemical%20engineering&rft.au=Gonce%20Kocken,%20Hale&rft.date=2023-11&rft.volume=101&rft.issue=11&rft.spage=6446&rft.epage=6454&rft.pages=6446-6454&rft.issn=0008-4034&rft.eissn=1939-019X&rft_id=info:doi/10.1002/cjce.24884&rft_dat=%3Cproquest_wiley%3E2873071375%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2254-583f853bb61fbb3c7bb5c0429b73fa1ac2cf09c32d0d199232d500909c8a11333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2873071375&rft_id=info:pmid/&rfr_iscdi=true