Loading…
Metric dynamic equilibrium logic
In temporal extensions of Answer Set Programming (ASP) based on linear-time, the behaviour of dynamic systems is captured by sequences of states. While this representation reflects their relative order, it abstracts away the specific times associated with each state. In many applications, however, t...
Saved in:
Published in: | Journal of applied non-classical logics 2023-10, Vol.33 (3-4), p.495-519 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2485-5d2499261785eeac9aedffd19f51fd7ebf794da47c055f6ff110bec300de19913 |
container_end_page | 519 |
container_issue | 3-4 |
container_start_page | 495 |
container_title | Journal of applied non-classical logics |
container_volume | 33 |
creator | Becker, Arvid Cabalar, Pedro Diéguez, Martín Farinas del Cerro, Luis Schaub, Torsten Schuhmann, Anna |
description | In temporal extensions of Answer Set Programming (ASP) based on linear-time, the behaviour of dynamic systems is captured by sequences of states. While this representation reflects their relative order, it abstracts away the specific times associated with each state. In many applications, however, timing constraints are important like, for instance, when planning and scheduling go hand in hand. We address this by developing a metric extension of linear-time Dynamic Equilibrium Logic, in which dynamic operators are constrained by intervals over integers. The resulting Metric Dynamic Equilibrium Logic provides the foundation of an ASP-based approach for specifying qualitative and quantitative dynamic constraints. As such, it constitutes the most general among a whole spectrum of temporal extensions of Equilibrium Logic. In detail, we show that it encompasses Temporal, Dynamic, Metric and regular Equilibrium Logic, as well as its classic counterparts once the law of the excluded middle is added. |
doi_str_mv | 10.1080/11663081.2023.2244365 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2873105690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873105690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2485-5d2499261785eeac9aedffd19f51fd7ebf794da47c055f6ff110bec300de19913</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_QSi4nnpvHjPJTim-oOJG1yHNQ1Lm0SYdpP_elNatq3MX3zkXPkJuEeYIEu4R65qBxDkFyuaUcs5qcUYmqISsRCPhvNyFqQ7QJbnKeQ0geKEnZPbudynamdv3pivpt2Ns4yrFsZu1w3e01-QimDb7m1NOydfz0-fitVp-vLwtHpeVpVyKSjjKlaI1NlJ4b6wy3oXgUAWBwTV-FRrFneGNBSFCHQIirLxlAM6jUsim5O64u0nDdvR5p9fDmPryUlPZMARRKyiUOFI2DTknH_Qmxc6kvUbQBxn6T4Y-yNAnGaX3cOzFPgypMz9Dap3emX07pJBMb2PW7P-JX4nMZHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873105690</pqid></control><display><type>article</type><title>Metric dynamic equilibrium logic</title><source>Taylor and Francis Science and Technology Collection</source><creator>Becker, Arvid ; Cabalar, Pedro ; Diéguez, Martín ; Farinas del Cerro, Luis ; Schaub, Torsten ; Schuhmann, Anna</creator><creatorcontrib>Becker, Arvid ; Cabalar, Pedro ; Diéguez, Martín ; Farinas del Cerro, Luis ; Schaub, Torsten ; Schuhmann, Anna</creatorcontrib><description>In temporal extensions of Answer Set Programming (ASP) based on linear-time, the behaviour of dynamic systems is captured by sequences of states. While this representation reflects their relative order, it abstracts away the specific times associated with each state. In many applications, however, timing constraints are important like, for instance, when planning and scheduling go hand in hand. We address this by developing a metric extension of linear-time Dynamic Equilibrium Logic, in which dynamic operators are constrained by intervals over integers. The resulting Metric Dynamic Equilibrium Logic provides the foundation of an ASP-based approach for specifying qualitative and quantitative dynamic constraints. As such, it constitutes the most general among a whole spectrum of temporal extensions of Equilibrium Logic. In detail, we show that it encompasses Temporal, Dynamic, Metric and regular Equilibrium Logic, as well as its classic counterparts once the law of the excluded middle is added.</description><identifier>ISSN: 1166-3081</identifier><identifier>EISSN: 1958-5780</identifier><identifier>DOI: 10.1080/11663081.2023.2244365</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Answer set programming ; Constraints ; Declarative programming ; Dynamical systems ; equilibrium logic ; linear dynamic logic ; linear temporal logic ; Logic ; Mathematical programming ; metric temporal logic ; Sequences</subject><ispartof>Journal of applied non-classical logics, 2023-10, Vol.33 (3-4), p.495-519</ispartof><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023</rights><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2485-5d2499261785eeac9aedffd19f51fd7ebf794da47c055f6ff110bec300de19913</cites><orcidid>0000-0001-8752-8876 ; 0000-0002-7456-041X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Becker, Arvid</creatorcontrib><creatorcontrib>Cabalar, Pedro</creatorcontrib><creatorcontrib>Diéguez, Martín</creatorcontrib><creatorcontrib>Farinas del Cerro, Luis</creatorcontrib><creatorcontrib>Schaub, Torsten</creatorcontrib><creatorcontrib>Schuhmann, Anna</creatorcontrib><title>Metric dynamic equilibrium logic</title><title>Journal of applied non-classical logics</title><description>In temporal extensions of Answer Set Programming (ASP) based on linear-time, the behaviour of dynamic systems is captured by sequences of states. While this representation reflects their relative order, it abstracts away the specific times associated with each state. In many applications, however, timing constraints are important like, for instance, when planning and scheduling go hand in hand. We address this by developing a metric extension of linear-time Dynamic Equilibrium Logic, in which dynamic operators are constrained by intervals over integers. The resulting Metric Dynamic Equilibrium Logic provides the foundation of an ASP-based approach for specifying qualitative and quantitative dynamic constraints. As such, it constitutes the most general among a whole spectrum of temporal extensions of Equilibrium Logic. In detail, we show that it encompasses Temporal, Dynamic, Metric and regular Equilibrium Logic, as well as its classic counterparts once the law of the excluded middle is added.</description><subject>Answer set programming</subject><subject>Constraints</subject><subject>Declarative programming</subject><subject>Dynamical systems</subject><subject>equilibrium logic</subject><subject>linear dynamic logic</subject><subject>linear temporal logic</subject><subject>Logic</subject><subject>Mathematical programming</subject><subject>metric temporal logic</subject><subject>Sequences</subject><issn>1166-3081</issn><issn>1958-5780</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kEtLAzEUhYMoWKs_QSi4nnpvHjPJTim-oOJG1yHNQ1Lm0SYdpP_elNatq3MX3zkXPkJuEeYIEu4R65qBxDkFyuaUcs5qcUYmqISsRCPhvNyFqQ7QJbnKeQ0geKEnZPbudynamdv3pivpt2Ns4yrFsZu1w3e01-QimDb7m1NOydfz0-fitVp-vLwtHpeVpVyKSjjKlaI1NlJ4b6wy3oXgUAWBwTV-FRrFneGNBSFCHQIirLxlAM6jUsim5O64u0nDdvR5p9fDmPryUlPZMARRKyiUOFI2DTknH_Qmxc6kvUbQBxn6T4Y-yNAnGaX3cOzFPgypMz9Dap3emX07pJBMb2PW7P-JX4nMZHA</recordid><startdate>20231002</startdate><enddate>20231002</enddate><creator>Becker, Arvid</creator><creator>Cabalar, Pedro</creator><creator>Diéguez, Martín</creator><creator>Farinas del Cerro, Luis</creator><creator>Schaub, Torsten</creator><creator>Schuhmann, Anna</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-8752-8876</orcidid><orcidid>https://orcid.org/0000-0002-7456-041X</orcidid></search><sort><creationdate>20231002</creationdate><title>Metric dynamic equilibrium logic</title><author>Becker, Arvid ; Cabalar, Pedro ; Diéguez, Martín ; Farinas del Cerro, Luis ; Schaub, Torsten ; Schuhmann, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2485-5d2499261785eeac9aedffd19f51fd7ebf794da47c055f6ff110bec300de19913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Answer set programming</topic><topic>Constraints</topic><topic>Declarative programming</topic><topic>Dynamical systems</topic><topic>equilibrium logic</topic><topic>linear dynamic logic</topic><topic>linear temporal logic</topic><topic>Logic</topic><topic>Mathematical programming</topic><topic>metric temporal logic</topic><topic>Sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Arvid</creatorcontrib><creatorcontrib>Cabalar, Pedro</creatorcontrib><creatorcontrib>Diéguez, Martín</creatorcontrib><creatorcontrib>Farinas del Cerro, Luis</creatorcontrib><creatorcontrib>Schaub, Torsten</creatorcontrib><creatorcontrib>Schuhmann, Anna</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of applied non-classical logics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Arvid</au><au>Cabalar, Pedro</au><au>Diéguez, Martín</au><au>Farinas del Cerro, Luis</au><au>Schaub, Torsten</au><au>Schuhmann, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metric dynamic equilibrium logic</atitle><jtitle>Journal of applied non-classical logics</jtitle><date>2023-10-02</date><risdate>2023</risdate><volume>33</volume><issue>3-4</issue><spage>495</spage><epage>519</epage><pages>495-519</pages><issn>1166-3081</issn><eissn>1958-5780</eissn><abstract>In temporal extensions of Answer Set Programming (ASP) based on linear-time, the behaviour of dynamic systems is captured by sequences of states. While this representation reflects their relative order, it abstracts away the specific times associated with each state. In many applications, however, timing constraints are important like, for instance, when planning and scheduling go hand in hand. We address this by developing a metric extension of linear-time Dynamic Equilibrium Logic, in which dynamic operators are constrained by intervals over integers. The resulting Metric Dynamic Equilibrium Logic provides the foundation of an ASP-based approach for specifying qualitative and quantitative dynamic constraints. As such, it constitutes the most general among a whole spectrum of temporal extensions of Equilibrium Logic. In detail, we show that it encompasses Temporal, Dynamic, Metric and regular Equilibrium Logic, as well as its classic counterparts once the law of the excluded middle is added.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/11663081.2023.2244365</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-8752-8876</orcidid><orcidid>https://orcid.org/0000-0002-7456-041X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1166-3081 |
ispartof | Journal of applied non-classical logics, 2023-10, Vol.33 (3-4), p.495-519 |
issn | 1166-3081 1958-5780 |
language | eng |
recordid | cdi_proquest_journals_2873105690 |
source | Taylor and Francis Science and Technology Collection |
subjects | Answer set programming Constraints Declarative programming Dynamical systems equilibrium logic linear dynamic logic linear temporal logic Logic Mathematical programming metric temporal logic Sequences |
title | Metric dynamic equilibrium logic |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T14%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metric%20dynamic%20equilibrium%20logic&rft.jtitle=Journal%20of%20applied%20non-classical%20logics&rft.au=Becker,%20Arvid&rft.date=2023-10-02&rft.volume=33&rft.issue=3-4&rft.spage=495&rft.epage=519&rft.pages=495-519&rft.issn=1166-3081&rft.eissn=1958-5780&rft_id=info:doi/10.1080/11663081.2023.2244365&rft_dat=%3Cproquest_infor%3E2873105690%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2485-5d2499261785eeac9aedffd19f51fd7ebf794da47c055f6ff110bec300de19913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2873105690&rft_id=info:pmid/&rfr_iscdi=true |