Loading…

Metric dynamic equilibrium logic

In temporal extensions of Answer Set Programming (ASP) based on linear-time, the behaviour of dynamic systems is captured by sequences of states. While this representation reflects their relative order, it abstracts away the specific times associated with each state. In many applications, however, t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied non-classical logics 2023-10, Vol.33 (3-4), p.495-519
Main Authors: Becker, Arvid, Cabalar, Pedro, Diéguez, Martín, Farinas del Cerro, Luis, Schaub, Torsten, Schuhmann, Anna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2485-5d2499261785eeac9aedffd19f51fd7ebf794da47c055f6ff110bec300de19913
container_end_page 519
container_issue 3-4
container_start_page 495
container_title Journal of applied non-classical logics
container_volume 33
creator Becker, Arvid
Cabalar, Pedro
Diéguez, Martín
Farinas del Cerro, Luis
Schaub, Torsten
Schuhmann, Anna
description In temporal extensions of Answer Set Programming (ASP) based on linear-time, the behaviour of dynamic systems is captured by sequences of states. While this representation reflects their relative order, it abstracts away the specific times associated with each state. In many applications, however, timing constraints are important like, for instance, when planning and scheduling go hand in hand. We address this by developing a metric extension of linear-time Dynamic Equilibrium Logic, in which dynamic operators are constrained by intervals over integers. The resulting Metric Dynamic Equilibrium Logic provides the foundation of an ASP-based approach for specifying qualitative and quantitative dynamic constraints. As such, it constitutes the most general among a whole spectrum of temporal extensions of Equilibrium Logic. In detail, we show that it encompasses Temporal, Dynamic, Metric and regular Equilibrium Logic, as well as its classic counterparts once the law of the excluded middle is added.
doi_str_mv 10.1080/11663081.2023.2244365
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2873105690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873105690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2485-5d2499261785eeac9aedffd19f51fd7ebf794da47c055f6ff110bec300de19913</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_QSi4nnpvHjPJTim-oOJG1yHNQ1Lm0SYdpP_elNatq3MX3zkXPkJuEeYIEu4R65qBxDkFyuaUcs5qcUYmqISsRCPhvNyFqQ7QJbnKeQ0geKEnZPbudynamdv3pivpt2Ns4yrFsZu1w3e01-QimDb7m1NOydfz0-fitVp-vLwtHpeVpVyKSjjKlaI1NlJ4b6wy3oXgUAWBwTV-FRrFneGNBSFCHQIirLxlAM6jUsim5O64u0nDdvR5p9fDmPryUlPZMARRKyiUOFI2DTknH_Qmxc6kvUbQBxn6T4Y-yNAnGaX3cOzFPgypMz9Dap3emX07pJBMb2PW7P-JX4nMZHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873105690</pqid></control><display><type>article</type><title>Metric dynamic equilibrium logic</title><source>Taylor and Francis Science and Technology Collection</source><creator>Becker, Arvid ; Cabalar, Pedro ; Diéguez, Martín ; Farinas del Cerro, Luis ; Schaub, Torsten ; Schuhmann, Anna</creator><creatorcontrib>Becker, Arvid ; Cabalar, Pedro ; Diéguez, Martín ; Farinas del Cerro, Luis ; Schaub, Torsten ; Schuhmann, Anna</creatorcontrib><description>In temporal extensions of Answer Set Programming (ASP) based on linear-time, the behaviour of dynamic systems is captured by sequences of states. While this representation reflects their relative order, it abstracts away the specific times associated with each state. In many applications, however, timing constraints are important like, for instance, when planning and scheduling go hand in hand. We address this by developing a metric extension of linear-time Dynamic Equilibrium Logic, in which dynamic operators are constrained by intervals over integers. The resulting Metric Dynamic Equilibrium Logic provides the foundation of an ASP-based approach for specifying qualitative and quantitative dynamic constraints. As such, it constitutes the most general among a whole spectrum of temporal extensions of Equilibrium Logic. In detail, we show that it encompasses Temporal, Dynamic, Metric and regular Equilibrium Logic, as well as its classic counterparts once the law of the excluded middle is added.</description><identifier>ISSN: 1166-3081</identifier><identifier>EISSN: 1958-5780</identifier><identifier>DOI: 10.1080/11663081.2023.2244365</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Answer set programming ; Constraints ; Declarative programming ; Dynamical systems ; equilibrium logic ; linear dynamic logic ; linear temporal logic ; Logic ; Mathematical programming ; metric temporal logic ; Sequences</subject><ispartof>Journal of applied non-classical logics, 2023-10, Vol.33 (3-4), p.495-519</ispartof><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2023</rights><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2485-5d2499261785eeac9aedffd19f51fd7ebf794da47c055f6ff110bec300de19913</cites><orcidid>0000-0001-8752-8876 ; 0000-0002-7456-041X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Becker, Arvid</creatorcontrib><creatorcontrib>Cabalar, Pedro</creatorcontrib><creatorcontrib>Diéguez, Martín</creatorcontrib><creatorcontrib>Farinas del Cerro, Luis</creatorcontrib><creatorcontrib>Schaub, Torsten</creatorcontrib><creatorcontrib>Schuhmann, Anna</creatorcontrib><title>Metric dynamic equilibrium logic</title><title>Journal of applied non-classical logics</title><description>In temporal extensions of Answer Set Programming (ASP) based on linear-time, the behaviour of dynamic systems is captured by sequences of states. While this representation reflects their relative order, it abstracts away the specific times associated with each state. In many applications, however, timing constraints are important like, for instance, when planning and scheduling go hand in hand. We address this by developing a metric extension of linear-time Dynamic Equilibrium Logic, in which dynamic operators are constrained by intervals over integers. The resulting Metric Dynamic Equilibrium Logic provides the foundation of an ASP-based approach for specifying qualitative and quantitative dynamic constraints. As such, it constitutes the most general among a whole spectrum of temporal extensions of Equilibrium Logic. In detail, we show that it encompasses Temporal, Dynamic, Metric and regular Equilibrium Logic, as well as its classic counterparts once the law of the excluded middle is added.</description><subject>Answer set programming</subject><subject>Constraints</subject><subject>Declarative programming</subject><subject>Dynamical systems</subject><subject>equilibrium logic</subject><subject>linear dynamic logic</subject><subject>linear temporal logic</subject><subject>Logic</subject><subject>Mathematical programming</subject><subject>metric temporal logic</subject><subject>Sequences</subject><issn>1166-3081</issn><issn>1958-5780</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kEtLAzEUhYMoWKs_QSi4nnpvHjPJTim-oOJG1yHNQ1Lm0SYdpP_elNatq3MX3zkXPkJuEeYIEu4R65qBxDkFyuaUcs5qcUYmqISsRCPhvNyFqQ7QJbnKeQ0geKEnZPbudynamdv3pivpt2Ns4yrFsZu1w3e01-QimDb7m1NOydfz0-fitVp-vLwtHpeVpVyKSjjKlaI1NlJ4b6wy3oXgUAWBwTV-FRrFneGNBSFCHQIirLxlAM6jUsim5O64u0nDdvR5p9fDmPryUlPZMARRKyiUOFI2DTknH_Qmxc6kvUbQBxn6T4Y-yNAnGaX3cOzFPgypMz9Dap3emX07pJBMb2PW7P-JX4nMZHA</recordid><startdate>20231002</startdate><enddate>20231002</enddate><creator>Becker, Arvid</creator><creator>Cabalar, Pedro</creator><creator>Diéguez, Martín</creator><creator>Farinas del Cerro, Luis</creator><creator>Schaub, Torsten</creator><creator>Schuhmann, Anna</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-8752-8876</orcidid><orcidid>https://orcid.org/0000-0002-7456-041X</orcidid></search><sort><creationdate>20231002</creationdate><title>Metric dynamic equilibrium logic</title><author>Becker, Arvid ; Cabalar, Pedro ; Diéguez, Martín ; Farinas del Cerro, Luis ; Schaub, Torsten ; Schuhmann, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2485-5d2499261785eeac9aedffd19f51fd7ebf794da47c055f6ff110bec300de19913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Answer set programming</topic><topic>Constraints</topic><topic>Declarative programming</topic><topic>Dynamical systems</topic><topic>equilibrium logic</topic><topic>linear dynamic logic</topic><topic>linear temporal logic</topic><topic>Logic</topic><topic>Mathematical programming</topic><topic>metric temporal logic</topic><topic>Sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Arvid</creatorcontrib><creatorcontrib>Cabalar, Pedro</creatorcontrib><creatorcontrib>Diéguez, Martín</creatorcontrib><creatorcontrib>Farinas del Cerro, Luis</creatorcontrib><creatorcontrib>Schaub, Torsten</creatorcontrib><creatorcontrib>Schuhmann, Anna</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of applied non-classical logics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Arvid</au><au>Cabalar, Pedro</au><au>Diéguez, Martín</au><au>Farinas del Cerro, Luis</au><au>Schaub, Torsten</au><au>Schuhmann, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metric dynamic equilibrium logic</atitle><jtitle>Journal of applied non-classical logics</jtitle><date>2023-10-02</date><risdate>2023</risdate><volume>33</volume><issue>3-4</issue><spage>495</spage><epage>519</epage><pages>495-519</pages><issn>1166-3081</issn><eissn>1958-5780</eissn><abstract>In temporal extensions of Answer Set Programming (ASP) based on linear-time, the behaviour of dynamic systems is captured by sequences of states. While this representation reflects their relative order, it abstracts away the specific times associated with each state. In many applications, however, timing constraints are important like, for instance, when planning and scheduling go hand in hand. We address this by developing a metric extension of linear-time Dynamic Equilibrium Logic, in which dynamic operators are constrained by intervals over integers. The resulting Metric Dynamic Equilibrium Logic provides the foundation of an ASP-based approach for specifying qualitative and quantitative dynamic constraints. As such, it constitutes the most general among a whole spectrum of temporal extensions of Equilibrium Logic. In detail, we show that it encompasses Temporal, Dynamic, Metric and regular Equilibrium Logic, as well as its classic counterparts once the law of the excluded middle is added.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/11663081.2023.2244365</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-8752-8876</orcidid><orcidid>https://orcid.org/0000-0002-7456-041X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1166-3081
ispartof Journal of applied non-classical logics, 2023-10, Vol.33 (3-4), p.495-519
issn 1166-3081
1958-5780
language eng
recordid cdi_proquest_journals_2873105690
source Taylor and Francis Science and Technology Collection
subjects Answer set programming
Constraints
Declarative programming
Dynamical systems
equilibrium logic
linear dynamic logic
linear temporal logic
Logic
Mathematical programming
metric temporal logic
Sequences
title Metric dynamic equilibrium logic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T14%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metric%20dynamic%20equilibrium%20logic&rft.jtitle=Journal%20of%20applied%20non-classical%20logics&rft.au=Becker,%20Arvid&rft.date=2023-10-02&rft.volume=33&rft.issue=3-4&rft.spage=495&rft.epage=519&rft.pages=495-519&rft.issn=1166-3081&rft.eissn=1958-5780&rft_id=info:doi/10.1080/11663081.2023.2244365&rft_dat=%3Cproquest_infor%3E2873105690%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2485-5d2499261785eeac9aedffd19f51fd7ebf794da47c055f6ff110bec300de19913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2873105690&rft_id=info:pmid/&rfr_iscdi=true