Loading…

A Wideband Thin Transmitarray Antenna by Using L-probe Patch Antenna With True-Time Delay

This paper presents a wideband thin transmitarray (TA) antenna by using low-profile L-probe patch antennas, which act as the receiving and transmitting antennas of the TA element. The receiving and transmitting antennas are connected by a microstrip-line phase shifter with true-time delay, so the TA...

Full description

Saved in:
Bibliographic Details
Published in:IEEE antennas and wireless propagation letters 2023-10, Vol.22 (10), p.1-5
Main Authors: Zhai, Zhen Jun, Lin, Feng, Zhao, Guo Qiang, Sun, Hou Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-4a57395e6fa5e354461ce057b20153175b39a95004c9b84df4d222bf5f5d259f3
cites cdi_FETCH-LOGICAL-c294t-4a57395e6fa5e354461ce057b20153175b39a95004c9b84df4d222bf5f5d259f3
container_end_page 5
container_issue 10
container_start_page 1
container_title IEEE antennas and wireless propagation letters
container_volume 22
creator Zhai, Zhen Jun
Lin, Feng
Zhao, Guo Qiang
Sun, Hou Jun
description This paper presents a wideband thin transmitarray (TA) antenna by using low-profile L-probe patch antennas, which act as the receiving and transmitting antennas of the TA element. The receiving and transmitting antennas are connected by a microstrip-line phase shifter with true-time delay, so the TA element maintains low transmission loss and linear phase-shift characteristic within a wide frequency range. The continuous 360° phase shift is obtained by rotating the receiving antenna and changing the length of microstrip-line phase shifter, which is integrated with the L-probe of receiving antenna in the same substrate. Thus, the TA antenna achieves a high aperture efficiency, wide gain bandwidth with a reduced profile. For verification, a prototype of 132-element TA antenna operating at 14 GHz is fabricated and measured. The size of the element is 0.42 λ 0 × 0.42 λ 0 , and the thickness of TA antenna is 0.13 λ 0 (λ 0 is the wavelength in free space at the lowest working frequency). The measured peak gain is 22.2 dBi and the maximum aperture efficiency is 50.7%. The measured 1-dB gain bandwidth is from 12.6 to 15.2 GHz (18.7%). The measured results also show a good radiation pattern with low cross polarization of 30 dB.
doi_str_mv 10.1109/LAWP.2023.3292250
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2873584239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10172292</ieee_id><sourcerecordid>2873584239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-4a57395e6fa5e354461ce057b20153175b39a95004c9b84df4d222bf5f5d259f3</originalsourceid><addsrcrecordid>eNpNkEtrwzAQhE1poWnaH1DoQdCzU73Wso4mfYKhOTiEnoRsy41CoqSSc_C_r0xC6WkX5pvdYZLknuAZIVg-lcVqMaOYshmjklLAF8mEAM9TECAux51lKYnCdXITwgZjIjJgk-SrQCvbmlq7FlVr61DltQs722vv9YAK1xvnNKoHtAzWfaMyPfh9bdBC9836T17Zfh2dR5NWdmfQs9nq4Ta56vQ2mLvznCbL15dq_p6Wn28f86JMGyp5n3INgkkwWafBMOA8I43BIGqKY2YioGZSS8CYN7LOedvxllJad9BBS0F2bJo8nu7GYD9HE3q12R-9iy8VzQWDnFMmI0VOVOP3IXjTqYO3O-0HRbAaG1Rjg2psUJ0bjJ6Hk8caY_7xRNBIsF8KiWrC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873584239</pqid></control><display><type>article</type><title>A Wideband Thin Transmitarray Antenna by Using L-probe Patch Antenna With True-Time Delay</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhai, Zhen Jun ; Lin, Feng ; Zhao, Guo Qiang ; Sun, Hou Jun</creator><creatorcontrib>Zhai, Zhen Jun ; Lin, Feng ; Zhao, Guo Qiang ; Sun, Hou Jun</creatorcontrib><description>This paper presents a wideband thin transmitarray (TA) antenna by using low-profile L-probe patch antennas, which act as the receiving and transmitting antennas of the TA element. The receiving and transmitting antennas are connected by a microstrip-line phase shifter with true-time delay, so the TA element maintains low transmission loss and linear phase-shift characteristic within a wide frequency range. The continuous 360° phase shift is obtained by rotating the receiving antenna and changing the length of microstrip-line phase shifter, which is integrated with the L-probe of receiving antenna in the same substrate. Thus, the TA antenna achieves a high aperture efficiency, wide gain bandwidth with a reduced profile. For verification, a prototype of 132-element TA antenna operating at 14 GHz is fabricated and measured. The size of the element is 0.42 λ 0 × 0.42 λ 0 , and the thickness of TA antenna is 0.13 λ 0 (λ 0 is the wavelength in free space at the lowest working frequency). The measured peak gain is 22.2 dBi and the maximum aperture efficiency is 50.7%. The measured 1-dB gain bandwidth is from 12.6 to 15.2 GHz (18.7%). The measured results also show a good radiation pattern with low cross polarization of 30 dB.</description><identifier>ISSN: 1536-1225</identifier><identifier>EISSN: 1548-5757</identifier><identifier>DOI: 10.1109/LAWP.2023.3292250</identifier><identifier>CODEN: IAWPA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antennas ; Apertures ; Bandwidths ; Broadband ; Broadband antennas ; Cross polarization ; Frequency ranges ; Gain ; Linear phase ; Metals ; Patch antenna ; Patch antennas ; Phase shift ; Phase shifters ; Receiving ; Receiving antennas ; Substrates ; thin ; Time lag ; Transmission ; Transmission loss ; transmitarray ; Transmitting antennas ; true-time delay ; Wideband</subject><ispartof>IEEE antennas and wireless propagation letters, 2023-10, Vol.22 (10), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-4a57395e6fa5e354461ce057b20153175b39a95004c9b84df4d222bf5f5d259f3</citedby><cites>FETCH-LOGICAL-c294t-4a57395e6fa5e354461ce057b20153175b39a95004c9b84df4d222bf5f5d259f3</cites><orcidid>0000-0001-6933-5261 ; 0000-0003-1262-6046 ; 0000-0003-0460-8972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10172292$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Zhai, Zhen Jun</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Zhao, Guo Qiang</creatorcontrib><creatorcontrib>Sun, Hou Jun</creatorcontrib><title>A Wideband Thin Transmitarray Antenna by Using L-probe Patch Antenna With True-Time Delay</title><title>IEEE antennas and wireless propagation letters</title><addtitle>LAWP</addtitle><description>This paper presents a wideband thin transmitarray (TA) antenna by using low-profile L-probe patch antennas, which act as the receiving and transmitting antennas of the TA element. The receiving and transmitting antennas are connected by a microstrip-line phase shifter with true-time delay, so the TA element maintains low transmission loss and linear phase-shift characteristic within a wide frequency range. The continuous 360° phase shift is obtained by rotating the receiving antenna and changing the length of microstrip-line phase shifter, which is integrated with the L-probe of receiving antenna in the same substrate. Thus, the TA antenna achieves a high aperture efficiency, wide gain bandwidth with a reduced profile. For verification, a prototype of 132-element TA antenna operating at 14 GHz is fabricated and measured. The size of the element is 0.42 λ 0 × 0.42 λ 0 , and the thickness of TA antenna is 0.13 λ 0 (λ 0 is the wavelength in free space at the lowest working frequency). The measured peak gain is 22.2 dBi and the maximum aperture efficiency is 50.7%. The measured 1-dB gain bandwidth is from 12.6 to 15.2 GHz (18.7%). The measured results also show a good radiation pattern with low cross polarization of 30 dB.</description><subject>Antennas</subject><subject>Apertures</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>Broadband antennas</subject><subject>Cross polarization</subject><subject>Frequency ranges</subject><subject>Gain</subject><subject>Linear phase</subject><subject>Metals</subject><subject>Patch antenna</subject><subject>Patch antennas</subject><subject>Phase shift</subject><subject>Phase shifters</subject><subject>Receiving</subject><subject>Receiving antennas</subject><subject>Substrates</subject><subject>thin</subject><subject>Time lag</subject><subject>Transmission</subject><subject>Transmission loss</subject><subject>transmitarray</subject><subject>Transmitting antennas</subject><subject>true-time delay</subject><subject>Wideband</subject><issn>1536-1225</issn><issn>1548-5757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEtrwzAQhE1poWnaH1DoQdCzU73Wso4mfYKhOTiEnoRsy41CoqSSc_C_r0xC6WkX5pvdYZLknuAZIVg-lcVqMaOYshmjklLAF8mEAM9TECAux51lKYnCdXITwgZjIjJgk-SrQCvbmlq7FlVr61DltQs722vv9YAK1xvnNKoHtAzWfaMyPfh9bdBC9836T17Zfh2dR5NWdmfQs9nq4Ta56vQ2mLvznCbL15dq_p6Wn28f86JMGyp5n3INgkkwWafBMOA8I43BIGqKY2YioGZSS8CYN7LOedvxllJad9BBS0F2bJo8nu7GYD9HE3q12R-9iy8VzQWDnFMmI0VOVOP3IXjTqYO3O-0HRbAaG1Rjg2psUJ0bjJ6Hk8caY_7xRNBIsF8KiWrC</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Zhai, Zhen Jun</creator><creator>Lin, Feng</creator><creator>Zhao, Guo Qiang</creator><creator>Sun, Hou Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6933-5261</orcidid><orcidid>https://orcid.org/0000-0003-1262-6046</orcidid><orcidid>https://orcid.org/0000-0003-0460-8972</orcidid></search><sort><creationdate>20231001</creationdate><title>A Wideband Thin Transmitarray Antenna by Using L-probe Patch Antenna With True-Time Delay</title><author>Zhai, Zhen Jun ; Lin, Feng ; Zhao, Guo Qiang ; Sun, Hou Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-4a57395e6fa5e354461ce057b20153175b39a95004c9b84df4d222bf5f5d259f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antennas</topic><topic>Apertures</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>Broadband antennas</topic><topic>Cross polarization</topic><topic>Frequency ranges</topic><topic>Gain</topic><topic>Linear phase</topic><topic>Metals</topic><topic>Patch antenna</topic><topic>Patch antennas</topic><topic>Phase shift</topic><topic>Phase shifters</topic><topic>Receiving</topic><topic>Receiving antennas</topic><topic>Substrates</topic><topic>thin</topic><topic>Time lag</topic><topic>Transmission</topic><topic>Transmission loss</topic><topic>transmitarray</topic><topic>Transmitting antennas</topic><topic>true-time delay</topic><topic>Wideband</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Zhen Jun</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Zhao, Guo Qiang</creatorcontrib><creatorcontrib>Sun, Hou Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE antennas and wireless propagation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Zhen Jun</au><au>Lin, Feng</au><au>Zhao, Guo Qiang</au><au>Sun, Hou Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Wideband Thin Transmitarray Antenna by Using L-probe Patch Antenna With True-Time Delay</atitle><jtitle>IEEE antennas and wireless propagation letters</jtitle><stitle>LAWP</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>22</volume><issue>10</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1536-1225</issn><eissn>1548-5757</eissn><coden>IAWPA7</coden><abstract>This paper presents a wideband thin transmitarray (TA) antenna by using low-profile L-probe patch antennas, which act as the receiving and transmitting antennas of the TA element. The receiving and transmitting antennas are connected by a microstrip-line phase shifter with true-time delay, so the TA element maintains low transmission loss and linear phase-shift characteristic within a wide frequency range. The continuous 360° phase shift is obtained by rotating the receiving antenna and changing the length of microstrip-line phase shifter, which is integrated with the L-probe of receiving antenna in the same substrate. Thus, the TA antenna achieves a high aperture efficiency, wide gain bandwidth with a reduced profile. For verification, a prototype of 132-element TA antenna operating at 14 GHz is fabricated and measured. The size of the element is 0.42 λ 0 × 0.42 λ 0 , and the thickness of TA antenna is 0.13 λ 0 (λ 0 is the wavelength in free space at the lowest working frequency). The measured peak gain is 22.2 dBi and the maximum aperture efficiency is 50.7%. The measured 1-dB gain bandwidth is from 12.6 to 15.2 GHz (18.7%). The measured results also show a good radiation pattern with low cross polarization of 30 dB.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LAWP.2023.3292250</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6933-5261</orcidid><orcidid>https://orcid.org/0000-0003-1262-6046</orcidid><orcidid>https://orcid.org/0000-0003-0460-8972</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1536-1225
ispartof IEEE antennas and wireless propagation letters, 2023-10, Vol.22 (10), p.1-5
issn 1536-1225
1548-5757
language eng
recordid cdi_proquest_journals_2873584239
source IEEE Electronic Library (IEL) Journals
subjects Antennas
Apertures
Bandwidths
Broadband
Broadband antennas
Cross polarization
Frequency ranges
Gain
Linear phase
Metals
Patch antenna
Patch antennas
Phase shift
Phase shifters
Receiving
Receiving antennas
Substrates
thin
Time lag
Transmission
Transmission loss
transmitarray
Transmitting antennas
true-time delay
Wideband
title A Wideband Thin Transmitarray Antenna by Using L-probe Patch Antenna With True-Time Delay
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A17%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Wideband%20Thin%20Transmitarray%20Antenna%20by%20Using%20L-probe%20Patch%20Antenna%20With%20True-Time%20Delay&rft.jtitle=IEEE%20antennas%20and%20wireless%20propagation%20letters&rft.au=Zhai,%20Zhen%20Jun&rft.date=2023-10-01&rft.volume=22&rft.issue=10&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1536-1225&rft.eissn=1548-5757&rft.coden=IAWPA7&rft_id=info:doi/10.1109/LAWP.2023.3292250&rft_dat=%3Cproquest_cross%3E2873584239%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-4a57395e6fa5e354461ce057b20153175b39a95004c9b84df4d222bf5f5d259f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2873584239&rft_id=info:pmid/&rft_ieee_id=10172292&rfr_iscdi=true