Loading…
A Wideband Thin Transmitarray Antenna by Using L-probe Patch Antenna With True-Time Delay
This paper presents a wideband thin transmitarray (TA) antenna by using low-profile L-probe patch antennas, which act as the receiving and transmitting antennas of the TA element. The receiving and transmitting antennas are connected by a microstrip-line phase shifter with true-time delay, so the TA...
Saved in:
Published in: | IEEE antennas and wireless propagation letters 2023-10, Vol.22 (10), p.1-5 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c294t-4a57395e6fa5e354461ce057b20153175b39a95004c9b84df4d222bf5f5d259f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c294t-4a57395e6fa5e354461ce057b20153175b39a95004c9b84df4d222bf5f5d259f3 |
container_end_page | 5 |
container_issue | 10 |
container_start_page | 1 |
container_title | IEEE antennas and wireless propagation letters |
container_volume | 22 |
creator | Zhai, Zhen Jun Lin, Feng Zhao, Guo Qiang Sun, Hou Jun |
description | This paper presents a wideband thin transmitarray (TA) antenna by using low-profile L-probe patch antennas, which act as the receiving and transmitting antennas of the TA element. The receiving and transmitting antennas are connected by a microstrip-line phase shifter with true-time delay, so the TA element maintains low transmission loss and linear phase-shift characteristic within a wide frequency range. The continuous 360° phase shift is obtained by rotating the receiving antenna and changing the length of microstrip-line phase shifter, which is integrated with the L-probe of receiving antenna in the same substrate. Thus, the TA antenna achieves a high aperture efficiency, wide gain bandwidth with a reduced profile. For verification, a prototype of 132-element TA antenna operating at 14 GHz is fabricated and measured. The size of the element is 0.42 λ 0 × 0.42 λ 0 , and the thickness of TA antenna is 0.13 λ 0 (λ 0 is the wavelength in free space at the lowest working frequency). The measured peak gain is 22.2 dBi and the maximum aperture efficiency is 50.7%. The measured 1-dB gain bandwidth is from 12.6 to 15.2 GHz (18.7%). The measured results also show a good radiation pattern with low cross polarization of 30 dB. |
doi_str_mv | 10.1109/LAWP.2023.3292250 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2873584239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10172292</ieee_id><sourcerecordid>2873584239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-4a57395e6fa5e354461ce057b20153175b39a95004c9b84df4d222bf5f5d259f3</originalsourceid><addsrcrecordid>eNpNkEtrwzAQhE1poWnaH1DoQdCzU73Wso4mfYKhOTiEnoRsy41CoqSSc_C_r0xC6WkX5pvdYZLknuAZIVg-lcVqMaOYshmjklLAF8mEAM9TECAux51lKYnCdXITwgZjIjJgk-SrQCvbmlq7FlVr61DltQs722vv9YAK1xvnNKoHtAzWfaMyPfh9bdBC9836T17Zfh2dR5NWdmfQs9nq4Ta56vQ2mLvznCbL15dq_p6Wn28f86JMGyp5n3INgkkwWafBMOA8I43BIGqKY2YioGZSS8CYN7LOedvxllJad9BBS0F2bJo8nu7GYD9HE3q12R-9iy8VzQWDnFMmI0VOVOP3IXjTqYO3O-0HRbAaG1Rjg2psUJ0bjJ6Hk8caY_7xRNBIsF8KiWrC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873584239</pqid></control><display><type>article</type><title>A Wideband Thin Transmitarray Antenna by Using L-probe Patch Antenna With True-Time Delay</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhai, Zhen Jun ; Lin, Feng ; Zhao, Guo Qiang ; Sun, Hou Jun</creator><creatorcontrib>Zhai, Zhen Jun ; Lin, Feng ; Zhao, Guo Qiang ; Sun, Hou Jun</creatorcontrib><description>This paper presents a wideband thin transmitarray (TA) antenna by using low-profile L-probe patch antennas, which act as the receiving and transmitting antennas of the TA element. The receiving and transmitting antennas are connected by a microstrip-line phase shifter with true-time delay, so the TA element maintains low transmission loss and linear phase-shift characteristic within a wide frequency range. The continuous 360° phase shift is obtained by rotating the receiving antenna and changing the length of microstrip-line phase shifter, which is integrated with the L-probe of receiving antenna in the same substrate. Thus, the TA antenna achieves a high aperture efficiency, wide gain bandwidth with a reduced profile. For verification, a prototype of 132-element TA antenna operating at 14 GHz is fabricated and measured. The size of the element is 0.42 λ 0 × 0.42 λ 0 , and the thickness of TA antenna is 0.13 λ 0 (λ 0 is the wavelength in free space at the lowest working frequency). The measured peak gain is 22.2 dBi and the maximum aperture efficiency is 50.7%. The measured 1-dB gain bandwidth is from 12.6 to 15.2 GHz (18.7%). The measured results also show a good radiation pattern with low cross polarization of 30 dB.</description><identifier>ISSN: 1536-1225</identifier><identifier>EISSN: 1548-5757</identifier><identifier>DOI: 10.1109/LAWP.2023.3292250</identifier><identifier>CODEN: IAWPA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antennas ; Apertures ; Bandwidths ; Broadband ; Broadband antennas ; Cross polarization ; Frequency ranges ; Gain ; Linear phase ; Metals ; Patch antenna ; Patch antennas ; Phase shift ; Phase shifters ; Receiving ; Receiving antennas ; Substrates ; thin ; Time lag ; Transmission ; Transmission loss ; transmitarray ; Transmitting antennas ; true-time delay ; Wideband</subject><ispartof>IEEE antennas and wireless propagation letters, 2023-10, Vol.22 (10), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-4a57395e6fa5e354461ce057b20153175b39a95004c9b84df4d222bf5f5d259f3</citedby><cites>FETCH-LOGICAL-c294t-4a57395e6fa5e354461ce057b20153175b39a95004c9b84df4d222bf5f5d259f3</cites><orcidid>0000-0001-6933-5261 ; 0000-0003-1262-6046 ; 0000-0003-0460-8972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10172292$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Zhai, Zhen Jun</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Zhao, Guo Qiang</creatorcontrib><creatorcontrib>Sun, Hou Jun</creatorcontrib><title>A Wideband Thin Transmitarray Antenna by Using L-probe Patch Antenna With True-Time Delay</title><title>IEEE antennas and wireless propagation letters</title><addtitle>LAWP</addtitle><description>This paper presents a wideband thin transmitarray (TA) antenna by using low-profile L-probe patch antennas, which act as the receiving and transmitting antennas of the TA element. The receiving and transmitting antennas are connected by a microstrip-line phase shifter with true-time delay, so the TA element maintains low transmission loss and linear phase-shift characteristic within a wide frequency range. The continuous 360° phase shift is obtained by rotating the receiving antenna and changing the length of microstrip-line phase shifter, which is integrated with the L-probe of receiving antenna in the same substrate. Thus, the TA antenna achieves a high aperture efficiency, wide gain bandwidth with a reduced profile. For verification, a prototype of 132-element TA antenna operating at 14 GHz is fabricated and measured. The size of the element is 0.42 λ 0 × 0.42 λ 0 , and the thickness of TA antenna is 0.13 λ 0 (λ 0 is the wavelength in free space at the lowest working frequency). The measured peak gain is 22.2 dBi and the maximum aperture efficiency is 50.7%. The measured 1-dB gain bandwidth is from 12.6 to 15.2 GHz (18.7%). The measured results also show a good radiation pattern with low cross polarization of 30 dB.</description><subject>Antennas</subject><subject>Apertures</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>Broadband antennas</subject><subject>Cross polarization</subject><subject>Frequency ranges</subject><subject>Gain</subject><subject>Linear phase</subject><subject>Metals</subject><subject>Patch antenna</subject><subject>Patch antennas</subject><subject>Phase shift</subject><subject>Phase shifters</subject><subject>Receiving</subject><subject>Receiving antennas</subject><subject>Substrates</subject><subject>thin</subject><subject>Time lag</subject><subject>Transmission</subject><subject>Transmission loss</subject><subject>transmitarray</subject><subject>Transmitting antennas</subject><subject>true-time delay</subject><subject>Wideband</subject><issn>1536-1225</issn><issn>1548-5757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEtrwzAQhE1poWnaH1DoQdCzU73Wso4mfYKhOTiEnoRsy41CoqSSc_C_r0xC6WkX5pvdYZLknuAZIVg-lcVqMaOYshmjklLAF8mEAM9TECAux51lKYnCdXITwgZjIjJgk-SrQCvbmlq7FlVr61DltQs722vv9YAK1xvnNKoHtAzWfaMyPfh9bdBC9836T17Zfh2dR5NWdmfQs9nq4Ta56vQ2mLvznCbL15dq_p6Wn28f86JMGyp5n3INgkkwWafBMOA8I43BIGqKY2YioGZSS8CYN7LOedvxllJad9BBS0F2bJo8nu7GYD9HE3q12R-9iy8VzQWDnFMmI0VOVOP3IXjTqYO3O-0HRbAaG1Rjg2psUJ0bjJ6Hk8caY_7xRNBIsF8KiWrC</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Zhai, Zhen Jun</creator><creator>Lin, Feng</creator><creator>Zhao, Guo Qiang</creator><creator>Sun, Hou Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6933-5261</orcidid><orcidid>https://orcid.org/0000-0003-1262-6046</orcidid><orcidid>https://orcid.org/0000-0003-0460-8972</orcidid></search><sort><creationdate>20231001</creationdate><title>A Wideband Thin Transmitarray Antenna by Using L-probe Patch Antenna With True-Time Delay</title><author>Zhai, Zhen Jun ; Lin, Feng ; Zhao, Guo Qiang ; Sun, Hou Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-4a57395e6fa5e354461ce057b20153175b39a95004c9b84df4d222bf5f5d259f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antennas</topic><topic>Apertures</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>Broadband antennas</topic><topic>Cross polarization</topic><topic>Frequency ranges</topic><topic>Gain</topic><topic>Linear phase</topic><topic>Metals</topic><topic>Patch antenna</topic><topic>Patch antennas</topic><topic>Phase shift</topic><topic>Phase shifters</topic><topic>Receiving</topic><topic>Receiving antennas</topic><topic>Substrates</topic><topic>thin</topic><topic>Time lag</topic><topic>Transmission</topic><topic>Transmission loss</topic><topic>transmitarray</topic><topic>Transmitting antennas</topic><topic>true-time delay</topic><topic>Wideband</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Zhen Jun</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Zhao, Guo Qiang</creatorcontrib><creatorcontrib>Sun, Hou Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE antennas and wireless propagation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Zhen Jun</au><au>Lin, Feng</au><au>Zhao, Guo Qiang</au><au>Sun, Hou Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Wideband Thin Transmitarray Antenna by Using L-probe Patch Antenna With True-Time Delay</atitle><jtitle>IEEE antennas and wireless propagation letters</jtitle><stitle>LAWP</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>22</volume><issue>10</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1536-1225</issn><eissn>1548-5757</eissn><coden>IAWPA7</coden><abstract>This paper presents a wideband thin transmitarray (TA) antenna by using low-profile L-probe patch antennas, which act as the receiving and transmitting antennas of the TA element. The receiving and transmitting antennas are connected by a microstrip-line phase shifter with true-time delay, so the TA element maintains low transmission loss and linear phase-shift characteristic within a wide frequency range. The continuous 360° phase shift is obtained by rotating the receiving antenna and changing the length of microstrip-line phase shifter, which is integrated with the L-probe of receiving antenna in the same substrate. Thus, the TA antenna achieves a high aperture efficiency, wide gain bandwidth with a reduced profile. For verification, a prototype of 132-element TA antenna operating at 14 GHz is fabricated and measured. The size of the element is 0.42 λ 0 × 0.42 λ 0 , and the thickness of TA antenna is 0.13 λ 0 (λ 0 is the wavelength in free space at the lowest working frequency). The measured peak gain is 22.2 dBi and the maximum aperture efficiency is 50.7%. The measured 1-dB gain bandwidth is from 12.6 to 15.2 GHz (18.7%). The measured results also show a good radiation pattern with low cross polarization of 30 dB.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LAWP.2023.3292250</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6933-5261</orcidid><orcidid>https://orcid.org/0000-0003-1262-6046</orcidid><orcidid>https://orcid.org/0000-0003-0460-8972</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-1225 |
ispartof | IEEE antennas and wireless propagation letters, 2023-10, Vol.22 (10), p.1-5 |
issn | 1536-1225 1548-5757 |
language | eng |
recordid | cdi_proquest_journals_2873584239 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Antennas Apertures Bandwidths Broadband Broadband antennas Cross polarization Frequency ranges Gain Linear phase Metals Patch antenna Patch antennas Phase shift Phase shifters Receiving Receiving antennas Substrates thin Time lag Transmission Transmission loss transmitarray Transmitting antennas true-time delay Wideband |
title | A Wideband Thin Transmitarray Antenna by Using L-probe Patch Antenna With True-Time Delay |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A17%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Wideband%20Thin%20Transmitarray%20Antenna%20by%20Using%20L-probe%20Patch%20Antenna%20With%20True-Time%20Delay&rft.jtitle=IEEE%20antennas%20and%20wireless%20propagation%20letters&rft.au=Zhai,%20Zhen%20Jun&rft.date=2023-10-01&rft.volume=22&rft.issue=10&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1536-1225&rft.eissn=1548-5757&rft.coden=IAWPA7&rft_id=info:doi/10.1109/LAWP.2023.3292250&rft_dat=%3Cproquest_cross%3E2873584239%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-4a57395e6fa5e354461ce057b20153175b39a95004c9b84df4d222bf5f5d259f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2873584239&rft_id=info:pmid/&rft_ieee_id=10172292&rfr_iscdi=true |