Loading…
One class of MHD equations: Conservation laws and exact solutions
The paper analyzes one of the models of equations of magnetohydrodynamics (MHD) derived earlier. The model was obtained as a result of group classification of the MHD equations in mass Lagrangian coordinates, where all dependent variables in Eulerian coordinates depend on time and two spatial coordi...
Saved in:
Published in: | Studies in applied mathematics (Cambridge) 2023-10, Vol.151 (3), p.957-974 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c218t-3c812664a6190808ad6c1bd9baabf4401bb233e9c8724b1d46a86ef2b5a982f23 |
container_end_page | 974 |
container_issue | 3 |
container_start_page | 957 |
container_title | Studies in applied mathematics (Cambridge) |
container_volume | 151 |
creator | Kaptsov, E. I. Meleshko, S. V. |
description | The paper analyzes one of the models of equations of magnetohydrodynamics (MHD) derived earlier. The model was obtained as a result of group classification of the MHD equations in mass Lagrangian coordinates, where all dependent variables in Eulerian coordinates depend on time and two spatial coordinates. The use of Lagrangian coordinates made it possible to solve four equations, which led to the form of reduced equations containing four arbitrary functions: entropy and a three‐dimensional vector associated with the magnetic field. The objective of this work is to develop conservation laws and exact solutions for the model. Conservation laws are obtained using Noether's theorem, while exact solutions are obtained either explicitly or by solving a system of ordinary or partial differential equations with two independent variables. Numerical methods are employed for the latter solutions. |
doi_str_mv | 10.1111/sapm.12616 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2873989296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873989296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-3c812664a6190808ad6c1bd9baabf4401bb233e9c8724b1d46a86ef2b5a982f23</originalsourceid><addsrcrecordid>eNotkE1rwzAMhs3YYFm3y36BYbdBOltJHHu3kn100NHLdjayY0NLmqR2so9_v7SdDhIvPEjiIeSWszmf6iFiv5tzEFyckYTnokxVodg5SRgDSKEAcUmuYtwyxnhZsIQs1q2jtsEYaefp-_KJuv2Iw6Zr4yOtpu7C1zHSBr8jxbam7gftQGPXjEfsmlx4bKK7-Z8z8vny_FEt09X69a1arFILXA5pZuX0l8hRcMUkk1gLy02tDKLxec64MZBlTllZQm54nQuUwnkwBSoJHrIZuTvt7UO3H10c9LYbQzud1CDLTEkFSkzU_YmyoYsxOK_7sNlh-NWc6YMifVCkj4qyP515WLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873989296</pqid></control><display><type>article</type><title>One class of MHD equations: Conservation laws and exact solutions</title><source>Business Source Ultimate</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Kaptsov, E. I. ; Meleshko, S. V.</creator><creatorcontrib>Kaptsov, E. I. ; Meleshko, S. V.</creatorcontrib><description>The paper analyzes one of the models of equations of magnetohydrodynamics (MHD) derived earlier. The model was obtained as a result of group classification of the MHD equations in mass Lagrangian coordinates, where all dependent variables in Eulerian coordinates depend on time and two spatial coordinates. The use of Lagrangian coordinates made it possible to solve four equations, which led to the form of reduced equations containing four arbitrary functions: entropy and a three‐dimensional vector associated with the magnetic field. The objective of this work is to develop conservation laws and exact solutions for the model. Conservation laws are obtained using Noether's theorem, while exact solutions are obtained either explicitly or by solving a system of ordinary or partial differential equations with two independent variables. Numerical methods are employed for the latter solutions.</description><identifier>ISSN: 0022-2526</identifier><identifier>EISSN: 1467-9590</identifier><identifier>DOI: 10.1111/sapm.12616</identifier><language>eng</language><publisher>Cambridge: Blackwell Publishing Ltd</publisher><subject>Conservation laws ; Dependent variables ; Exact solutions ; Independent variables ; Lagrange coordinates ; Magnetohydrodynamics ; Mathematical models ; Numerical methods ; Partial differential equations</subject><ispartof>Studies in applied mathematics (Cambridge), 2023-10, Vol.151 (3), p.957-974</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-3c812664a6190808ad6c1bd9baabf4401bb233e9c8724b1d46a86ef2b5a982f23</cites><orcidid>0000-0001-7984-4238 ; 0000-0002-3205-5650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kaptsov, E. I.</creatorcontrib><creatorcontrib>Meleshko, S. V.</creatorcontrib><title>One class of MHD equations: Conservation laws and exact solutions</title><title>Studies in applied mathematics (Cambridge)</title><description>The paper analyzes one of the models of equations of magnetohydrodynamics (MHD) derived earlier. The model was obtained as a result of group classification of the MHD equations in mass Lagrangian coordinates, where all dependent variables in Eulerian coordinates depend on time and two spatial coordinates. The use of Lagrangian coordinates made it possible to solve four equations, which led to the form of reduced equations containing four arbitrary functions: entropy and a three‐dimensional vector associated with the magnetic field. The objective of this work is to develop conservation laws and exact solutions for the model. Conservation laws are obtained using Noether's theorem, while exact solutions are obtained either explicitly or by solving a system of ordinary or partial differential equations with two independent variables. Numerical methods are employed for the latter solutions.</description><subject>Conservation laws</subject><subject>Dependent variables</subject><subject>Exact solutions</subject><subject>Independent variables</subject><subject>Lagrange coordinates</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>Numerical methods</subject><subject>Partial differential equations</subject><issn>0022-2526</issn><issn>1467-9590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkE1rwzAMhs3YYFm3y36BYbdBOltJHHu3kn100NHLdjayY0NLmqR2so9_v7SdDhIvPEjiIeSWszmf6iFiv5tzEFyckYTnokxVodg5SRgDSKEAcUmuYtwyxnhZsIQs1q2jtsEYaefp-_KJuv2Iw6Zr4yOtpu7C1zHSBr8jxbam7gftQGPXjEfsmlx4bKK7-Z8z8vny_FEt09X69a1arFILXA5pZuX0l8hRcMUkk1gLy02tDKLxec64MZBlTllZQm54nQuUwnkwBSoJHrIZuTvt7UO3H10c9LYbQzud1CDLTEkFSkzU_YmyoYsxOK_7sNlh-NWc6YMifVCkj4qyP515WLA</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Kaptsov, E. I.</creator><creator>Meleshko, S. V.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-7984-4238</orcidid><orcidid>https://orcid.org/0000-0002-3205-5650</orcidid></search><sort><creationdate>202310</creationdate><title>One class of MHD equations: Conservation laws and exact solutions</title><author>Kaptsov, E. I. ; Meleshko, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-3c812664a6190808ad6c1bd9baabf4401bb233e9c8724b1d46a86ef2b5a982f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Conservation laws</topic><topic>Dependent variables</topic><topic>Exact solutions</topic><topic>Independent variables</topic><topic>Lagrange coordinates</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>Numerical methods</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaptsov, E. I.</creatorcontrib><creatorcontrib>Meleshko, S. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Studies in applied mathematics (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaptsov, E. I.</au><au>Meleshko, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One class of MHD equations: Conservation laws and exact solutions</atitle><jtitle>Studies in applied mathematics (Cambridge)</jtitle><date>2023-10</date><risdate>2023</risdate><volume>151</volume><issue>3</issue><spage>957</spage><epage>974</epage><pages>957-974</pages><issn>0022-2526</issn><eissn>1467-9590</eissn><abstract>The paper analyzes one of the models of equations of magnetohydrodynamics (MHD) derived earlier. The model was obtained as a result of group classification of the MHD equations in mass Lagrangian coordinates, where all dependent variables in Eulerian coordinates depend on time and two spatial coordinates. The use of Lagrangian coordinates made it possible to solve four equations, which led to the form of reduced equations containing four arbitrary functions: entropy and a three‐dimensional vector associated with the magnetic field. The objective of this work is to develop conservation laws and exact solutions for the model. Conservation laws are obtained using Noether's theorem, while exact solutions are obtained either explicitly or by solving a system of ordinary or partial differential equations with two independent variables. Numerical methods are employed for the latter solutions.</abstract><cop>Cambridge</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/sapm.12616</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7984-4238</orcidid><orcidid>https://orcid.org/0000-0002-3205-5650</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2526 |
ispartof | Studies in applied mathematics (Cambridge), 2023-10, Vol.151 (3), p.957-974 |
issn | 0022-2526 1467-9590 |
language | eng |
recordid | cdi_proquest_journals_2873989296 |
source | Business Source Ultimate; Wiley-Blackwell Read & Publish Collection |
subjects | Conservation laws Dependent variables Exact solutions Independent variables Lagrange coordinates Magnetohydrodynamics Mathematical models Numerical methods Partial differential equations |
title | One class of MHD equations: Conservation laws and exact solutions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One%20class%20of%20MHD%20equations:%20Conservation%20laws%20and%20exact%20solutions&rft.jtitle=Studies%20in%20applied%20mathematics%20(Cambridge)&rft.au=Kaptsov,%20E.%20I.&rft.date=2023-10&rft.volume=151&rft.issue=3&rft.spage=957&rft.epage=974&rft.pages=957-974&rft.issn=0022-2526&rft.eissn=1467-9590&rft_id=info:doi/10.1111/sapm.12616&rft_dat=%3Cproquest_cross%3E2873989296%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c218t-3c812664a6190808ad6c1bd9baabf4401bb233e9c8724b1d46a86ef2b5a982f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2873989296&rft_id=info:pmid/&rfr_iscdi=true |