Loading…

One class of MHD equations: Conservation laws and exact solutions

The paper analyzes one of the models of equations of magnetohydrodynamics (MHD) derived earlier. The model was obtained as a result of group classification of the MHD equations in mass Lagrangian coordinates, where all dependent variables in Eulerian coordinates depend on time and two spatial coordi...

Full description

Saved in:
Bibliographic Details
Published in:Studies in applied mathematics (Cambridge) 2023-10, Vol.151 (3), p.957-974
Main Authors: Kaptsov, E. I., Meleshko, S. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c218t-3c812664a6190808ad6c1bd9baabf4401bb233e9c8724b1d46a86ef2b5a982f23
container_end_page 974
container_issue 3
container_start_page 957
container_title Studies in applied mathematics (Cambridge)
container_volume 151
creator Kaptsov, E. I.
Meleshko, S. V.
description The paper analyzes one of the models of equations of magnetohydrodynamics (MHD) derived earlier. The model was obtained as a result of group classification of the MHD equations in mass Lagrangian coordinates, where all dependent variables in Eulerian coordinates depend on time and two spatial coordinates. The use of Lagrangian coordinates made it possible to solve four equations, which led to the form of reduced equations containing four arbitrary functions: entropy and a three‐dimensional vector associated with the magnetic field. The objective of this work is to develop conservation laws and exact solutions for the model. Conservation laws are obtained using Noether's theorem, while exact solutions are obtained either explicitly or by solving a system of ordinary or partial differential equations with two independent variables. Numerical methods are employed for the latter solutions.
doi_str_mv 10.1111/sapm.12616
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2873989296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873989296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-3c812664a6190808ad6c1bd9baabf4401bb233e9c8724b1d46a86ef2b5a982f23</originalsourceid><addsrcrecordid>eNotkE1rwzAMhs3YYFm3y36BYbdBOltJHHu3kn100NHLdjayY0NLmqR2so9_v7SdDhIvPEjiIeSWszmf6iFiv5tzEFyckYTnokxVodg5SRgDSKEAcUmuYtwyxnhZsIQs1q2jtsEYaefp-_KJuv2Iw6Zr4yOtpu7C1zHSBr8jxbam7gftQGPXjEfsmlx4bKK7-Z8z8vny_FEt09X69a1arFILXA5pZuX0l8hRcMUkk1gLy02tDKLxec64MZBlTllZQm54nQuUwnkwBSoJHrIZuTvt7UO3H10c9LYbQzud1CDLTEkFSkzU_YmyoYsxOK_7sNlh-NWc6YMifVCkj4qyP515WLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873989296</pqid></control><display><type>article</type><title>One class of MHD equations: Conservation laws and exact solutions</title><source>Business Source Ultimate</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Kaptsov, E. I. ; Meleshko, S. V.</creator><creatorcontrib>Kaptsov, E. I. ; Meleshko, S. V.</creatorcontrib><description>The paper analyzes one of the models of equations of magnetohydrodynamics (MHD) derived earlier. The model was obtained as a result of group classification of the MHD equations in mass Lagrangian coordinates, where all dependent variables in Eulerian coordinates depend on time and two spatial coordinates. The use of Lagrangian coordinates made it possible to solve four equations, which led to the form of reduced equations containing four arbitrary functions: entropy and a three‐dimensional vector associated with the magnetic field. The objective of this work is to develop conservation laws and exact solutions for the model. Conservation laws are obtained using Noether's theorem, while exact solutions are obtained either explicitly or by solving a system of ordinary or partial differential equations with two independent variables. Numerical methods are employed for the latter solutions.</description><identifier>ISSN: 0022-2526</identifier><identifier>EISSN: 1467-9590</identifier><identifier>DOI: 10.1111/sapm.12616</identifier><language>eng</language><publisher>Cambridge: Blackwell Publishing Ltd</publisher><subject>Conservation laws ; Dependent variables ; Exact solutions ; Independent variables ; Lagrange coordinates ; Magnetohydrodynamics ; Mathematical models ; Numerical methods ; Partial differential equations</subject><ispartof>Studies in applied mathematics (Cambridge), 2023-10, Vol.151 (3), p.957-974</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-3c812664a6190808ad6c1bd9baabf4401bb233e9c8724b1d46a86ef2b5a982f23</cites><orcidid>0000-0001-7984-4238 ; 0000-0002-3205-5650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kaptsov, E. I.</creatorcontrib><creatorcontrib>Meleshko, S. V.</creatorcontrib><title>One class of MHD equations: Conservation laws and exact solutions</title><title>Studies in applied mathematics (Cambridge)</title><description>The paper analyzes one of the models of equations of magnetohydrodynamics (MHD) derived earlier. The model was obtained as a result of group classification of the MHD equations in mass Lagrangian coordinates, where all dependent variables in Eulerian coordinates depend on time and two spatial coordinates. The use of Lagrangian coordinates made it possible to solve four equations, which led to the form of reduced equations containing four arbitrary functions: entropy and a three‐dimensional vector associated with the magnetic field. The objective of this work is to develop conservation laws and exact solutions for the model. Conservation laws are obtained using Noether's theorem, while exact solutions are obtained either explicitly or by solving a system of ordinary or partial differential equations with two independent variables. Numerical methods are employed for the latter solutions.</description><subject>Conservation laws</subject><subject>Dependent variables</subject><subject>Exact solutions</subject><subject>Independent variables</subject><subject>Lagrange coordinates</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>Numerical methods</subject><subject>Partial differential equations</subject><issn>0022-2526</issn><issn>1467-9590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkE1rwzAMhs3YYFm3y36BYbdBOltJHHu3kn100NHLdjayY0NLmqR2so9_v7SdDhIvPEjiIeSWszmf6iFiv5tzEFyckYTnokxVodg5SRgDSKEAcUmuYtwyxnhZsIQs1q2jtsEYaefp-_KJuv2Iw6Zr4yOtpu7C1zHSBr8jxbam7gftQGPXjEfsmlx4bKK7-Z8z8vny_FEt09X69a1arFILXA5pZuX0l8hRcMUkk1gLy02tDKLxec64MZBlTllZQm54nQuUwnkwBSoJHrIZuTvt7UO3H10c9LYbQzud1CDLTEkFSkzU_YmyoYsxOK_7sNlh-NWc6YMifVCkj4qyP515WLA</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Kaptsov, E. I.</creator><creator>Meleshko, S. V.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-7984-4238</orcidid><orcidid>https://orcid.org/0000-0002-3205-5650</orcidid></search><sort><creationdate>202310</creationdate><title>One class of MHD equations: Conservation laws and exact solutions</title><author>Kaptsov, E. I. ; Meleshko, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-3c812664a6190808ad6c1bd9baabf4401bb233e9c8724b1d46a86ef2b5a982f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Conservation laws</topic><topic>Dependent variables</topic><topic>Exact solutions</topic><topic>Independent variables</topic><topic>Lagrange coordinates</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>Numerical methods</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaptsov, E. I.</creatorcontrib><creatorcontrib>Meleshko, S. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Studies in applied mathematics (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaptsov, E. I.</au><au>Meleshko, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One class of MHD equations: Conservation laws and exact solutions</atitle><jtitle>Studies in applied mathematics (Cambridge)</jtitle><date>2023-10</date><risdate>2023</risdate><volume>151</volume><issue>3</issue><spage>957</spage><epage>974</epage><pages>957-974</pages><issn>0022-2526</issn><eissn>1467-9590</eissn><abstract>The paper analyzes one of the models of equations of magnetohydrodynamics (MHD) derived earlier. The model was obtained as a result of group classification of the MHD equations in mass Lagrangian coordinates, where all dependent variables in Eulerian coordinates depend on time and two spatial coordinates. The use of Lagrangian coordinates made it possible to solve four equations, which led to the form of reduced equations containing four arbitrary functions: entropy and a three‐dimensional vector associated with the magnetic field. The objective of this work is to develop conservation laws and exact solutions for the model. Conservation laws are obtained using Noether's theorem, while exact solutions are obtained either explicitly or by solving a system of ordinary or partial differential equations with two independent variables. Numerical methods are employed for the latter solutions.</abstract><cop>Cambridge</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/sapm.12616</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7984-4238</orcidid><orcidid>https://orcid.org/0000-0002-3205-5650</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2526
ispartof Studies in applied mathematics (Cambridge), 2023-10, Vol.151 (3), p.957-974
issn 0022-2526
1467-9590
language eng
recordid cdi_proquest_journals_2873989296
source Business Source Ultimate; Wiley-Blackwell Read & Publish Collection
subjects Conservation laws
Dependent variables
Exact solutions
Independent variables
Lagrange coordinates
Magnetohydrodynamics
Mathematical models
Numerical methods
Partial differential equations
title One class of MHD equations: Conservation laws and exact solutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One%20class%20of%20MHD%20equations:%20Conservation%20laws%20and%20exact%20solutions&rft.jtitle=Studies%20in%20applied%20mathematics%20(Cambridge)&rft.au=Kaptsov,%20E.%20I.&rft.date=2023-10&rft.volume=151&rft.issue=3&rft.spage=957&rft.epage=974&rft.pages=957-974&rft.issn=0022-2526&rft.eissn=1467-9590&rft_id=info:doi/10.1111/sapm.12616&rft_dat=%3Cproquest_cross%3E2873989296%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c218t-3c812664a6190808ad6c1bd9baabf4401bb233e9c8724b1d46a86ef2b5a982f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2873989296&rft_id=info:pmid/&rfr_iscdi=true