Loading…
Influence of High-Dose 80 MeV Proton Irradiation on the Electronic Structure and Photoluminescence of β-Ga2O3
β-Ga 2 O 3 is regarded as one of the best materials for application in deep space exploration; thus, research on β-Ga 2 O 3 -related radiation damage is necessary for the use of devices in harsh environments. The present work explored the effects of 80 MeV high-energy proton irradiation on β-Ga 2 O...
Saved in:
Published in: | Journal of electronic materials 2023-11, Vol.52 (11), p.7718-7727 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-8d0409271cba904956a31ab6e0f4520e8be3802c364728c45aa45606022194543 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-8d0409271cba904956a31ab6e0f4520e8be3802c364728c45aa45606022194543 |
container_end_page | 7727 |
container_issue | 11 |
container_start_page | 7718 |
container_title | Journal of electronic materials |
container_volume | 52 |
creator | Wang, Kejia Cao, Rongxing Mei, Bo Zhang, Hongwei Lv, He Zhao, Lin Xue, Yuxiong Zeng, Xianghua |
description | β-Ga
2
O
3
is regarded as one of the best materials for application in deep space exploration; thus, research on β-Ga
2
O
3
-related radiation damage is necessary for the use of devices in harsh environments. The present work explored the effects of 80 MeV high-energy proton irradiation on β-Ga
2
O
3
single crystals with fluence of 4 × 10
13
cm
−2
and 1 × 10
14
cm
−2
. X-ray photoelectron spectrometry (XPS) and ultraviolet photoelectron spectrometry (UPS) measurements demonstrated that before proton irradiation, the Fermi level was pinned at the mid-gap energy level due to the existence of native oxygen and gallium vacancy defects. After proton irradiation, gallium and oxygen vacancies increased with irradiation fluence, resulting in the reduction of the bandgap of β-Ga
2
O
3
. Proton irradiation of β-Ga
2
O
3
at 80 MeV is more likely to produce oxygen vacancies; hence, the Fermi level shifts upward to the conduction band. In addition, the UV photoluminescence emission at 3.29 eV is greatly enhanced with irradiation fluence. These results will be helpful for the design of UV devices.
Graphical Abstract |
doi_str_mv | 10.1007/s11664-023-10687-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2874055050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874055050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8d0409271cba904956a31ab6e0f4520e8be3802c364728c45aa45606022194543</originalsourceid><addsrcrecordid>eNp9kEtKBDEQhoMoOD4u4CrgOlqVV6eX4mMcUBR84C5kMmmnZexo0r3wNp7BI3gAz2R0FHdCQVXB__9FfYTsIOwhQLWfEbWWDLhgCNpUDFfICJUsq9F3q2QEQiNTXKh1spHzAwAqNDgicdI1iyF0PtDY0NP2fs6OYg7UwPvrebillyn2saOTlNysdX1b5lL9PNDjRfB9il3r6VWfBt8PKVDXzejlvFgWw2Pbhex_kz_e2NjxC7FF1hq3yGH7p2-Sm5Pj68NTdnYxnhwenDEvsO6ZmYGEmlfop64GWSvtBLqpDtBIxSGYaRAGuBdaVtx4qZyTSoMGzrGW5e9NsrvMfUrxeQi5tw9xSF05abmpJCgFCoqKL1U-xZxTaOxTah9derEI9gusXYK1Baz9BmuxmMTSlIu4uw_pL_of1yfTmXqs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874055050</pqid></control><display><type>article</type><title>Influence of High-Dose 80 MeV Proton Irradiation on the Electronic Structure and Photoluminescence of β-Ga2O3</title><source>Springer Link</source><creator>Wang, Kejia ; Cao, Rongxing ; Mei, Bo ; Zhang, Hongwei ; Lv, He ; Zhao, Lin ; Xue, Yuxiong ; Zeng, Xianghua</creator><creatorcontrib>Wang, Kejia ; Cao, Rongxing ; Mei, Bo ; Zhang, Hongwei ; Lv, He ; Zhao, Lin ; Xue, Yuxiong ; Zeng, Xianghua</creatorcontrib><description>β-Ga
2
O
3
is regarded as one of the best materials for application in deep space exploration; thus, research on β-Ga
2
O
3
-related radiation damage is necessary for the use of devices in harsh environments. The present work explored the effects of 80 MeV high-energy proton irradiation on β-Ga
2
O
3
single crystals with fluence of 4 × 10
13
cm
−2
and 1 × 10
14
cm
−2
. X-ray photoelectron spectrometry (XPS) and ultraviolet photoelectron spectrometry (UPS) measurements demonstrated that before proton irradiation, the Fermi level was pinned at the mid-gap energy level due to the existence of native oxygen and gallium vacancy defects. After proton irradiation, gallium and oxygen vacancies increased with irradiation fluence, resulting in the reduction of the bandgap of β-Ga
2
O
3
. Proton irradiation of β-Ga
2
O
3
at 80 MeV is more likely to produce oxygen vacancies; hence, the Fermi level shifts upward to the conduction band. In addition, the UV photoluminescence emission at 3.29 eV is greatly enhanced with irradiation fluence. These results will be helpful for the design of UV devices.
Graphical Abstract</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-023-10687-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Conduction bands ; Crystal defects ; Deep space ; Electronic structure ; Electronics and Microelectronics ; Electrons ; Energy gap ; Energy levels ; Fermi level ; Fluence ; Gallium oxides ; Instrumentation ; Materials Science ; Optical and Electronic Materials ; Original Research Article ; Oxygen ; Photoelectrons ; Photoluminescence ; Proton irradiation ; Radiation damage ; Radiation dosage ; Scientific imaging ; Single crystals ; Solid State Physics ; Space exploration ; Spectrometry ; X ray photoelectron spectroscopy</subject><ispartof>Journal of electronic materials, 2023-11, Vol.52 (11), p.7718-7727</ispartof><rights>The Minerals, Metals & Materials Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8d0409271cba904956a31ab6e0f4520e8be3802c364728c45aa45606022194543</citedby><cites>FETCH-LOGICAL-c319t-8d0409271cba904956a31ab6e0f4520e8be3802c364728c45aa45606022194543</cites><orcidid>0000-0003-4775-6764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Kejia</creatorcontrib><creatorcontrib>Cao, Rongxing</creatorcontrib><creatorcontrib>Mei, Bo</creatorcontrib><creatorcontrib>Zhang, Hongwei</creatorcontrib><creatorcontrib>Lv, He</creatorcontrib><creatorcontrib>Zhao, Lin</creatorcontrib><creatorcontrib>Xue, Yuxiong</creatorcontrib><creatorcontrib>Zeng, Xianghua</creatorcontrib><title>Influence of High-Dose 80 MeV Proton Irradiation on the Electronic Structure and Photoluminescence of β-Ga2O3</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>β-Ga
2
O
3
is regarded as one of the best materials for application in deep space exploration; thus, research on β-Ga
2
O
3
-related radiation damage is necessary for the use of devices in harsh environments. The present work explored the effects of 80 MeV high-energy proton irradiation on β-Ga
2
O
3
single crystals with fluence of 4 × 10
13
cm
−2
and 1 × 10
14
cm
−2
. X-ray photoelectron spectrometry (XPS) and ultraviolet photoelectron spectrometry (UPS) measurements demonstrated that before proton irradiation, the Fermi level was pinned at the mid-gap energy level due to the existence of native oxygen and gallium vacancy defects. After proton irradiation, gallium and oxygen vacancies increased with irradiation fluence, resulting in the reduction of the bandgap of β-Ga
2
O
3
. Proton irradiation of β-Ga
2
O
3
at 80 MeV is more likely to produce oxygen vacancies; hence, the Fermi level shifts upward to the conduction band. In addition, the UV photoluminescence emission at 3.29 eV is greatly enhanced with irradiation fluence. These results will be helpful for the design of UV devices.
Graphical Abstract</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Conduction bands</subject><subject>Crystal defects</subject><subject>Deep space</subject><subject>Electronic structure</subject><subject>Electronics and Microelectronics</subject><subject>Electrons</subject><subject>Energy gap</subject><subject>Energy levels</subject><subject>Fermi level</subject><subject>Fluence</subject><subject>Gallium oxides</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Oxygen</subject><subject>Photoelectrons</subject><subject>Photoluminescence</subject><subject>Proton irradiation</subject><subject>Radiation damage</subject><subject>Radiation dosage</subject><subject>Scientific imaging</subject><subject>Single crystals</subject><subject>Solid State Physics</subject><subject>Space exploration</subject><subject>Spectrometry</subject><subject>X ray photoelectron spectroscopy</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtKBDEQhoMoOD4u4CrgOlqVV6eX4mMcUBR84C5kMmmnZexo0r3wNp7BI3gAz2R0FHdCQVXB__9FfYTsIOwhQLWfEbWWDLhgCNpUDFfICJUsq9F3q2QEQiNTXKh1spHzAwAqNDgicdI1iyF0PtDY0NP2fs6OYg7UwPvrebillyn2saOTlNysdX1b5lL9PNDjRfB9il3r6VWfBt8PKVDXzejlvFgWw2Pbhex_kz_e2NjxC7FF1hq3yGH7p2-Sm5Pj68NTdnYxnhwenDEvsO6ZmYGEmlfop64GWSvtBLqpDtBIxSGYaRAGuBdaVtx4qZyTSoMGzrGW5e9NsrvMfUrxeQi5tw9xSF05abmpJCgFCoqKL1U-xZxTaOxTah9derEI9gusXYK1Baz9BmuxmMTSlIu4uw_pL_of1yfTmXqs</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Wang, Kejia</creator><creator>Cao, Rongxing</creator><creator>Mei, Bo</creator><creator>Zhang, Hongwei</creator><creator>Lv, He</creator><creator>Zhao, Lin</creator><creator>Xue, Yuxiong</creator><creator>Zeng, Xianghua</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-4775-6764</orcidid></search><sort><creationdate>20231101</creationdate><title>Influence of High-Dose 80 MeV Proton Irradiation on the Electronic Structure and Photoluminescence of β-Ga2O3</title><author>Wang, Kejia ; Cao, Rongxing ; Mei, Bo ; Zhang, Hongwei ; Lv, He ; Zhao, Lin ; Xue, Yuxiong ; Zeng, Xianghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8d0409271cba904956a31ab6e0f4520e8be3802c364728c45aa45606022194543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Conduction bands</topic><topic>Crystal defects</topic><topic>Deep space</topic><topic>Electronic structure</topic><topic>Electronics and Microelectronics</topic><topic>Electrons</topic><topic>Energy gap</topic><topic>Energy levels</topic><topic>Fermi level</topic><topic>Fluence</topic><topic>Gallium oxides</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Oxygen</topic><topic>Photoelectrons</topic><topic>Photoluminescence</topic><topic>Proton irradiation</topic><topic>Radiation damage</topic><topic>Radiation dosage</topic><topic>Scientific imaging</topic><topic>Single crystals</topic><topic>Solid State Physics</topic><topic>Space exploration</topic><topic>Spectrometry</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kejia</creatorcontrib><creatorcontrib>Cao, Rongxing</creatorcontrib><creatorcontrib>Mei, Bo</creatorcontrib><creatorcontrib>Zhang, Hongwei</creatorcontrib><creatorcontrib>Lv, He</creatorcontrib><creatorcontrib>Zhao, Lin</creatorcontrib><creatorcontrib>Xue, Yuxiong</creatorcontrib><creatorcontrib>Zeng, Xianghua</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kejia</au><au>Cao, Rongxing</au><au>Mei, Bo</au><au>Zhang, Hongwei</au><au>Lv, He</au><au>Zhao, Lin</au><au>Xue, Yuxiong</au><au>Zeng, Xianghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of High-Dose 80 MeV Proton Irradiation on the Electronic Structure and Photoluminescence of β-Ga2O3</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>52</volume><issue>11</issue><spage>7718</spage><epage>7727</epage><pages>7718-7727</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>β-Ga
2
O
3
is regarded as one of the best materials for application in deep space exploration; thus, research on β-Ga
2
O
3
-related radiation damage is necessary for the use of devices in harsh environments. The present work explored the effects of 80 MeV high-energy proton irradiation on β-Ga
2
O
3
single crystals with fluence of 4 × 10
13
cm
−2
and 1 × 10
14
cm
−2
. X-ray photoelectron spectrometry (XPS) and ultraviolet photoelectron spectrometry (UPS) measurements demonstrated that before proton irradiation, the Fermi level was pinned at the mid-gap energy level due to the existence of native oxygen and gallium vacancy defects. After proton irradiation, gallium and oxygen vacancies increased with irradiation fluence, resulting in the reduction of the bandgap of β-Ga
2
O
3
. Proton irradiation of β-Ga
2
O
3
at 80 MeV is more likely to produce oxygen vacancies; hence, the Fermi level shifts upward to the conduction band. In addition, the UV photoluminescence emission at 3.29 eV is greatly enhanced with irradiation fluence. These results will be helpful for the design of UV devices.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-023-10687-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4775-6764</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2023-11, Vol.52 (11), p.7718-7727 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2874055050 |
source | Springer Link |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Conduction bands Crystal defects Deep space Electronic structure Electronics and Microelectronics Electrons Energy gap Energy levels Fermi level Fluence Gallium oxides Instrumentation Materials Science Optical and Electronic Materials Original Research Article Oxygen Photoelectrons Photoluminescence Proton irradiation Radiation damage Radiation dosage Scientific imaging Single crystals Solid State Physics Space exploration Spectrometry X ray photoelectron spectroscopy |
title | Influence of High-Dose 80 MeV Proton Irradiation on the Electronic Structure and Photoluminescence of β-Ga2O3 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A05%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20High-Dose%2080%C2%A0MeV%20Proton%20Irradiation%20on%20the%20Electronic%20Structure%20and%20Photoluminescence%20of%20%CE%B2-Ga2O3&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Wang,%20Kejia&rft.date=2023-11-01&rft.volume=52&rft.issue=11&rft.spage=7718&rft.epage=7727&rft.pages=7718-7727&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-023-10687-1&rft_dat=%3Cproquest_cross%3E2874055050%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-8d0409271cba904956a31ab6e0f4520e8be3802c364728c45aa45606022194543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2874055050&rft_id=info:pmid/&rfr_iscdi=true |