Loading…

Influence of High-Dose 80 MeV Proton Irradiation on the Electronic Structure and Photoluminescence of β-Ga2O3

β-Ga 2 O 3 is regarded as one of the best materials for application in deep space exploration; thus, research on β-Ga 2 O 3 -related radiation damage is necessary for the use of devices in harsh environments. The present work explored the effects of 80 MeV high-energy proton irradiation on β-Ga 2 O...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2023-11, Vol.52 (11), p.7718-7727
Main Authors: Wang, Kejia, Cao, Rongxing, Mei, Bo, Zhang, Hongwei, Lv, He, Zhao, Lin, Xue, Yuxiong, Zeng, Xianghua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-8d0409271cba904956a31ab6e0f4520e8be3802c364728c45aa45606022194543
cites cdi_FETCH-LOGICAL-c319t-8d0409271cba904956a31ab6e0f4520e8be3802c364728c45aa45606022194543
container_end_page 7727
container_issue 11
container_start_page 7718
container_title Journal of electronic materials
container_volume 52
creator Wang, Kejia
Cao, Rongxing
Mei, Bo
Zhang, Hongwei
Lv, He
Zhao, Lin
Xue, Yuxiong
Zeng, Xianghua
description β-Ga 2 O 3 is regarded as one of the best materials for application in deep space exploration; thus, research on β-Ga 2 O 3 -related radiation damage is necessary for the use of devices in harsh environments. The present work explored the effects of 80 MeV high-energy proton irradiation on β-Ga 2 O 3 single crystals with fluence of 4 × 10 13  cm −2 and 1 × 10 14  cm −2 . X-ray photoelectron spectrometry (XPS) and ultraviolet photoelectron spectrometry (UPS) measurements demonstrated that before proton irradiation, the Fermi level was pinned at the mid-gap energy level due to the existence of native oxygen and gallium vacancy defects. After proton irradiation, gallium and oxygen vacancies increased with irradiation fluence, resulting in the reduction of the bandgap of β-Ga 2 O 3 . Proton irradiation of β-Ga 2 O 3 at 80 MeV is more likely to produce oxygen vacancies; hence, the Fermi level shifts upward to the conduction band. In addition, the UV photoluminescence emission at 3.29 eV is greatly enhanced with irradiation fluence. These results will be helpful for the design of UV devices. Graphical Abstract
doi_str_mv 10.1007/s11664-023-10687-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2874055050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874055050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8d0409271cba904956a31ab6e0f4520e8be3802c364728c45aa45606022194543</originalsourceid><addsrcrecordid>eNp9kEtKBDEQhoMoOD4u4CrgOlqVV6eX4mMcUBR84C5kMmmnZexo0r3wNp7BI3gAz2R0FHdCQVXB__9FfYTsIOwhQLWfEbWWDLhgCNpUDFfICJUsq9F3q2QEQiNTXKh1spHzAwAqNDgicdI1iyF0PtDY0NP2fs6OYg7UwPvrebillyn2saOTlNysdX1b5lL9PNDjRfB9il3r6VWfBt8PKVDXzejlvFgWw2Pbhex_kz_e2NjxC7FF1hq3yGH7p2-Sm5Pj68NTdnYxnhwenDEvsO6ZmYGEmlfop64GWSvtBLqpDtBIxSGYaRAGuBdaVtx4qZyTSoMGzrGW5e9NsrvMfUrxeQi5tw9xSF05abmpJCgFCoqKL1U-xZxTaOxTah9derEI9gusXYK1Baz9BmuxmMTSlIu4uw_pL_of1yfTmXqs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874055050</pqid></control><display><type>article</type><title>Influence of High-Dose 80 MeV Proton Irradiation on the Electronic Structure and Photoluminescence of β-Ga2O3</title><source>Springer Link</source><creator>Wang, Kejia ; Cao, Rongxing ; Mei, Bo ; Zhang, Hongwei ; Lv, He ; Zhao, Lin ; Xue, Yuxiong ; Zeng, Xianghua</creator><creatorcontrib>Wang, Kejia ; Cao, Rongxing ; Mei, Bo ; Zhang, Hongwei ; Lv, He ; Zhao, Lin ; Xue, Yuxiong ; Zeng, Xianghua</creatorcontrib><description>β-Ga 2 O 3 is regarded as one of the best materials for application in deep space exploration; thus, research on β-Ga 2 O 3 -related radiation damage is necessary for the use of devices in harsh environments. The present work explored the effects of 80 MeV high-energy proton irradiation on β-Ga 2 O 3 single crystals with fluence of 4 × 10 13  cm −2 and 1 × 10 14  cm −2 . X-ray photoelectron spectrometry (XPS) and ultraviolet photoelectron spectrometry (UPS) measurements demonstrated that before proton irradiation, the Fermi level was pinned at the mid-gap energy level due to the existence of native oxygen and gallium vacancy defects. After proton irradiation, gallium and oxygen vacancies increased with irradiation fluence, resulting in the reduction of the bandgap of β-Ga 2 O 3 . Proton irradiation of β-Ga 2 O 3 at 80 MeV is more likely to produce oxygen vacancies; hence, the Fermi level shifts upward to the conduction band. In addition, the UV photoluminescence emission at 3.29 eV is greatly enhanced with irradiation fluence. These results will be helpful for the design of UV devices. Graphical Abstract</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-023-10687-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Conduction bands ; Crystal defects ; Deep space ; Electronic structure ; Electronics and Microelectronics ; Electrons ; Energy gap ; Energy levels ; Fermi level ; Fluence ; Gallium oxides ; Instrumentation ; Materials Science ; Optical and Electronic Materials ; Original Research Article ; Oxygen ; Photoelectrons ; Photoluminescence ; Proton irradiation ; Radiation damage ; Radiation dosage ; Scientific imaging ; Single crystals ; Solid State Physics ; Space exploration ; Spectrometry ; X ray photoelectron spectroscopy</subject><ispartof>Journal of electronic materials, 2023-11, Vol.52 (11), p.7718-7727</ispartof><rights>The Minerals, Metals &amp; Materials Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8d0409271cba904956a31ab6e0f4520e8be3802c364728c45aa45606022194543</citedby><cites>FETCH-LOGICAL-c319t-8d0409271cba904956a31ab6e0f4520e8be3802c364728c45aa45606022194543</cites><orcidid>0000-0003-4775-6764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Kejia</creatorcontrib><creatorcontrib>Cao, Rongxing</creatorcontrib><creatorcontrib>Mei, Bo</creatorcontrib><creatorcontrib>Zhang, Hongwei</creatorcontrib><creatorcontrib>Lv, He</creatorcontrib><creatorcontrib>Zhao, Lin</creatorcontrib><creatorcontrib>Xue, Yuxiong</creatorcontrib><creatorcontrib>Zeng, Xianghua</creatorcontrib><title>Influence of High-Dose 80 MeV Proton Irradiation on the Electronic Structure and Photoluminescence of β-Ga2O3</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>β-Ga 2 O 3 is regarded as one of the best materials for application in deep space exploration; thus, research on β-Ga 2 O 3 -related radiation damage is necessary for the use of devices in harsh environments. The present work explored the effects of 80 MeV high-energy proton irradiation on β-Ga 2 O 3 single crystals with fluence of 4 × 10 13  cm −2 and 1 × 10 14  cm −2 . X-ray photoelectron spectrometry (XPS) and ultraviolet photoelectron spectrometry (UPS) measurements demonstrated that before proton irradiation, the Fermi level was pinned at the mid-gap energy level due to the existence of native oxygen and gallium vacancy defects. After proton irradiation, gallium and oxygen vacancies increased with irradiation fluence, resulting in the reduction of the bandgap of β-Ga 2 O 3 . Proton irradiation of β-Ga 2 O 3 at 80 MeV is more likely to produce oxygen vacancies; hence, the Fermi level shifts upward to the conduction band. In addition, the UV photoluminescence emission at 3.29 eV is greatly enhanced with irradiation fluence. These results will be helpful for the design of UV devices. Graphical Abstract</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Conduction bands</subject><subject>Crystal defects</subject><subject>Deep space</subject><subject>Electronic structure</subject><subject>Electronics and Microelectronics</subject><subject>Electrons</subject><subject>Energy gap</subject><subject>Energy levels</subject><subject>Fermi level</subject><subject>Fluence</subject><subject>Gallium oxides</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Oxygen</subject><subject>Photoelectrons</subject><subject>Photoluminescence</subject><subject>Proton irradiation</subject><subject>Radiation damage</subject><subject>Radiation dosage</subject><subject>Scientific imaging</subject><subject>Single crystals</subject><subject>Solid State Physics</subject><subject>Space exploration</subject><subject>Spectrometry</subject><subject>X ray photoelectron spectroscopy</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtKBDEQhoMoOD4u4CrgOlqVV6eX4mMcUBR84C5kMmmnZexo0r3wNp7BI3gAz2R0FHdCQVXB__9FfYTsIOwhQLWfEbWWDLhgCNpUDFfICJUsq9F3q2QEQiNTXKh1spHzAwAqNDgicdI1iyF0PtDY0NP2fs6OYg7UwPvrebillyn2saOTlNysdX1b5lL9PNDjRfB9il3r6VWfBt8PKVDXzejlvFgWw2Pbhex_kz_e2NjxC7FF1hq3yGH7p2-Sm5Pj68NTdnYxnhwenDEvsO6ZmYGEmlfop64GWSvtBLqpDtBIxSGYaRAGuBdaVtx4qZyTSoMGzrGW5e9NsrvMfUrxeQi5tw9xSF05abmpJCgFCoqKL1U-xZxTaOxTah9derEI9gusXYK1Baz9BmuxmMTSlIu4uw_pL_of1yfTmXqs</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Wang, Kejia</creator><creator>Cao, Rongxing</creator><creator>Mei, Bo</creator><creator>Zhang, Hongwei</creator><creator>Lv, He</creator><creator>Zhao, Lin</creator><creator>Xue, Yuxiong</creator><creator>Zeng, Xianghua</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-4775-6764</orcidid></search><sort><creationdate>20231101</creationdate><title>Influence of High-Dose 80 MeV Proton Irradiation on the Electronic Structure and Photoluminescence of β-Ga2O3</title><author>Wang, Kejia ; Cao, Rongxing ; Mei, Bo ; Zhang, Hongwei ; Lv, He ; Zhao, Lin ; Xue, Yuxiong ; Zeng, Xianghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8d0409271cba904956a31ab6e0f4520e8be3802c364728c45aa45606022194543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Conduction bands</topic><topic>Crystal defects</topic><topic>Deep space</topic><topic>Electronic structure</topic><topic>Electronics and Microelectronics</topic><topic>Electrons</topic><topic>Energy gap</topic><topic>Energy levels</topic><topic>Fermi level</topic><topic>Fluence</topic><topic>Gallium oxides</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Oxygen</topic><topic>Photoelectrons</topic><topic>Photoluminescence</topic><topic>Proton irradiation</topic><topic>Radiation damage</topic><topic>Radiation dosage</topic><topic>Scientific imaging</topic><topic>Single crystals</topic><topic>Solid State Physics</topic><topic>Space exploration</topic><topic>Spectrometry</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kejia</creatorcontrib><creatorcontrib>Cao, Rongxing</creatorcontrib><creatorcontrib>Mei, Bo</creatorcontrib><creatorcontrib>Zhang, Hongwei</creatorcontrib><creatorcontrib>Lv, He</creatorcontrib><creatorcontrib>Zhao, Lin</creatorcontrib><creatorcontrib>Xue, Yuxiong</creatorcontrib><creatorcontrib>Zeng, Xianghua</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kejia</au><au>Cao, Rongxing</au><au>Mei, Bo</au><au>Zhang, Hongwei</au><au>Lv, He</au><au>Zhao, Lin</au><au>Xue, Yuxiong</au><au>Zeng, Xianghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of High-Dose 80 MeV Proton Irradiation on the Electronic Structure and Photoluminescence of β-Ga2O3</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>52</volume><issue>11</issue><spage>7718</spage><epage>7727</epage><pages>7718-7727</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>β-Ga 2 O 3 is regarded as one of the best materials for application in deep space exploration; thus, research on β-Ga 2 O 3 -related radiation damage is necessary for the use of devices in harsh environments. The present work explored the effects of 80 MeV high-energy proton irradiation on β-Ga 2 O 3 single crystals with fluence of 4 × 10 13  cm −2 and 1 × 10 14  cm −2 . X-ray photoelectron spectrometry (XPS) and ultraviolet photoelectron spectrometry (UPS) measurements demonstrated that before proton irradiation, the Fermi level was pinned at the mid-gap energy level due to the existence of native oxygen and gallium vacancy defects. After proton irradiation, gallium and oxygen vacancies increased with irradiation fluence, resulting in the reduction of the bandgap of β-Ga 2 O 3 . Proton irradiation of β-Ga 2 O 3 at 80 MeV is more likely to produce oxygen vacancies; hence, the Fermi level shifts upward to the conduction band. In addition, the UV photoluminescence emission at 3.29 eV is greatly enhanced with irradiation fluence. These results will be helpful for the design of UV devices. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-023-10687-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4775-6764</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2023-11, Vol.52 (11), p.7718-7727
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2874055050
source Springer Link
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Conduction bands
Crystal defects
Deep space
Electronic structure
Electronics and Microelectronics
Electrons
Energy gap
Energy levels
Fermi level
Fluence
Gallium oxides
Instrumentation
Materials Science
Optical and Electronic Materials
Original Research Article
Oxygen
Photoelectrons
Photoluminescence
Proton irradiation
Radiation damage
Radiation dosage
Scientific imaging
Single crystals
Solid State Physics
Space exploration
Spectrometry
X ray photoelectron spectroscopy
title Influence of High-Dose 80 MeV Proton Irradiation on the Electronic Structure and Photoluminescence of β-Ga2O3
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A05%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20High-Dose%2080%C2%A0MeV%20Proton%20Irradiation%20on%20the%20Electronic%20Structure%20and%20Photoluminescence%20of%20%CE%B2-Ga2O3&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Wang,%20Kejia&rft.date=2023-11-01&rft.volume=52&rft.issue=11&rft.spage=7718&rft.epage=7727&rft.pages=7718-7727&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-023-10687-1&rft_dat=%3Cproquest_cross%3E2874055050%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-8d0409271cba904956a31ab6e0f4520e8be3802c364728c45aa45606022194543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2874055050&rft_id=info:pmid/&rfr_iscdi=true