Loading…

Maximal generalized rank in graphical matrix spaces

Let M n ( F ) be the space of n × n matrices over a field F . For a subset ℬ ⊂ [ n ] 2 let M ℬ ( F ) = { A ∈ M n ( F ) : A ( i , j ) ∉ ℬ } . Let ν b ( ℬ ) denote the matching number of the n by n bipartite graph determined by ℬ . For S ⊂ M n ( F ) let ρ ( S ) = max{rk( A ): A ∈ S }. Li, Qiao, Wigder...

Full description

Saved in:
Bibliographic Details
Published in:Israel journal of mathematics 2023-09, Vol.256 (1), p.297-309
Main Authors: Guterman, Alexander, Meshulam, Roy, Spiridonov, Igor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-63d13a44f54bfb435d0bcf6ef2db2262ff093c423a3c00ad24236ecc4cc04c193
cites cdi_FETCH-LOGICAL-c316t-63d13a44f54bfb435d0bcf6ef2db2262ff093c423a3c00ad24236ecc4cc04c193
container_end_page 309
container_issue 1
container_start_page 297
container_title Israel journal of mathematics
container_volume 256
creator Guterman, Alexander
Meshulam, Roy
Spiridonov, Igor
description Let M n ( F ) be the space of n × n matrices over a field F . For a subset ℬ ⊂ [ n ] 2 let M ℬ ( F ) = { A ∈ M n ( F ) : A ( i , j ) ∉ ℬ } . Let ν b ( ℬ ) denote the matching number of the n by n bipartite graph determined by ℬ . For S ⊂ M n ( F ) let ρ ( S ) = max{rk( A ): A ∈ S }. Li, Qiao, Wigderson, Wigderson and Zhang [6] have recently proved the following characterization of the maximal dimension of bounded rank subspaces of M ℬ ( F ) . Theorem (Li, Qiao, Wigderson, Wigderson, Zhang): For any ℬ ⊂ [ n ] 2 (1) max { dim W : W ≤ M ℬ ( F ) , ρ ( W ) ≤ k } = max { ∣ ℬ ′ ∣ : ℬ ′ ⊂ ℬ , ν b ( ℬ ′ ) ≤ k } . The main results of this note are two extensions of (1). Let S n denote the symmetric group on [ n ]. For ω : ∐ n = 1 ∞ S n → F ∗ = F \ { 0 } define a function D ω on each M n ( F ) by D ω ( A ) = ∑ σ ∈ S n ω ( σ ) ∏ i = 1 n A ( i , σ ( i ) ) . Let rk ω ( A ) be the maximal k such that there exists a k × k submatrix B of A with D ω ( B )≠0. For S ⊂ M n ( F ) let ρ ω ( S ) = max { rk ω ( A ) : A ∈ S } . The first extension of (1) concerns general weight functions. T heorem : For any ω as above and ℬ ⊂ [ n ] 2 max { dim W : W ≤ M ℬ ( F ) , ρ ω ( W ) ≤ k } = max { ∣ ℬ ′ ∣ : ℬ ′ ⊂ ℬ , ν b ( ℬ ′ ) ≤ k } Let A n ( F ) denote the space of alternating matrices in M n ( F ) . For a graph G ⊂ ( [ n ] 2 ) let A G ( F ) = { A ∈ A n ( F ) : A ( i , j ) = 0 if { i , j } ∉ G } . Let ν ( G ) denote the matching number of G . The second extension of (1) concerns general graphs. T heorem : For any G ⊂ ( [ n ] 2 ) max { dim U : U ≤ A G ( F ) , ρ ( U ) ≤ 2 k } = max { ∣ G ′ ∣ : G ′ ⊂ G , ν ( G ′ ) ≤ k }.
doi_str_mv 10.1007/s11856-023-2508-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2875459047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2875459047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-63d13a44f54bfb435d0bcf6ef2db2262ff093c423a3c00ad24236ecc4cc04c193</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt_gLcFz9GZycduj1L8gooXPYdsNlm3tts1aaH615uygidPMzDvveH9GLtEuEaA8iYhVkpzIMFJQcX1EZug0opXCvGYTQAIOWFJp-wspSWAEiWKCRPPdt-t7apofe-jXXXfvimi7T-Kri_aaIf3zuXr2m5jty_SYJ1P5-wk2FXyF79zyt7u717nj3zx8vA0v11wJ1BvuRYNCitlULIOtRSqgdoF7QM1NZGmEGAmnCRhhQOwDeVVe-ekcyAdzsSUXY25Q9x87nzamuVmF_v80lBVKqlmIMuswlHl4ial6IMZYm4UvwyCObAxIxuT2ZgDG6Ozh0ZPytq-9fEv-X_TD5FjZfU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875459047</pqid></control><display><type>article</type><title>Maximal generalized rank in graphical matrix spaces</title><source>Springer Nature</source><creator>Guterman, Alexander ; Meshulam, Roy ; Spiridonov, Igor</creator><creatorcontrib>Guterman, Alexander ; Meshulam, Roy ; Spiridonov, Igor</creatorcontrib><description>Let M n ( F ) be the space of n × n matrices over a field F . For a subset ℬ ⊂ [ n ] 2 let M ℬ ( F ) = { A ∈ M n ( F ) : A ( i , j ) ∉ ℬ } . Let ν b ( ℬ ) denote the matching number of the n by n bipartite graph determined by ℬ . For S ⊂ M n ( F ) let ρ ( S ) = max{rk( A ): A ∈ S }. Li, Qiao, Wigderson, Wigderson and Zhang [6] have recently proved the following characterization of the maximal dimension of bounded rank subspaces of M ℬ ( F ) . Theorem (Li, Qiao, Wigderson, Wigderson, Zhang): For any ℬ ⊂ [ n ] 2 (1) max { dim W : W ≤ M ℬ ( F ) , ρ ( W ) ≤ k } = max { ∣ ℬ ′ ∣ : ℬ ′ ⊂ ℬ , ν b ( ℬ ′ ) ≤ k } . The main results of this note are two extensions of (1). Let S n denote the symmetric group on [ n ]. For ω : ∐ n = 1 ∞ S n → F ∗ = F \ { 0 } define a function D ω on each M n ( F ) by D ω ( A ) = ∑ σ ∈ S n ω ( σ ) ∏ i = 1 n A ( i , σ ( i ) ) . Let rk ω ( A ) be the maximal k such that there exists a k × k submatrix B of A with D ω ( B )≠0. For S ⊂ M n ( F ) let ρ ω ( S ) = max { rk ω ( A ) : A ∈ S } . The first extension of (1) concerns general weight functions. T heorem : For any ω as above and ℬ ⊂ [ n ] 2 max { dim W : W ≤ M ℬ ( F ) , ρ ω ( W ) ≤ k } = max { ∣ ℬ ′ ∣ : ℬ ′ ⊂ ℬ , ν b ( ℬ ′ ) ≤ k } Let A n ( F ) denote the space of alternating matrices in M n ( F ) . For a graph G ⊂ ( [ n ] 2 ) let A G ( F ) = { A ∈ A n ( F ) : A ( i , j ) = 0 if { i , j } ∉ G } . Let ν ( G ) denote the matching number of G . The second extension of (1) concerns general graphs. T heorem : For any G ⊂ ( [ n ] 2 ) max { dim U : U ≤ A G ( F ) , ρ ( U ) ≤ 2 k } = max { ∣ G ′ ∣ : G ′ ⊂ G , ν ( G ′ ) ≤ k }.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-023-2508-6</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Graph theory ; Group Theory and Generalizations ; Matching ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Subspaces ; Theorems ; Theoretical ; Weighting functions</subject><ispartof>Israel journal of mathematics, 2023-09, Vol.256 (1), p.297-309</ispartof><rights>The Hebrew University of Jerusalem 2023</rights><rights>The Hebrew University of Jerusalem 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-63d13a44f54bfb435d0bcf6ef2db2262ff093c423a3c00ad24236ecc4cc04c193</citedby><cites>FETCH-LOGICAL-c316t-63d13a44f54bfb435d0bcf6ef2db2262ff093c423a3c00ad24236ecc4cc04c193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Guterman, Alexander</creatorcontrib><creatorcontrib>Meshulam, Roy</creatorcontrib><creatorcontrib>Spiridonov, Igor</creatorcontrib><title>Maximal generalized rank in graphical matrix spaces</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>Let M n ( F ) be the space of n × n matrices over a field F . For a subset ℬ ⊂ [ n ] 2 let M ℬ ( F ) = { A ∈ M n ( F ) : A ( i , j ) ∉ ℬ } . Let ν b ( ℬ ) denote the matching number of the n by n bipartite graph determined by ℬ . For S ⊂ M n ( F ) let ρ ( S ) = max{rk( A ): A ∈ S }. Li, Qiao, Wigderson, Wigderson and Zhang [6] have recently proved the following characterization of the maximal dimension of bounded rank subspaces of M ℬ ( F ) . Theorem (Li, Qiao, Wigderson, Wigderson, Zhang): For any ℬ ⊂ [ n ] 2 (1) max { dim W : W ≤ M ℬ ( F ) , ρ ( W ) ≤ k } = max { ∣ ℬ ′ ∣ : ℬ ′ ⊂ ℬ , ν b ( ℬ ′ ) ≤ k } . The main results of this note are two extensions of (1). Let S n denote the symmetric group on [ n ]. For ω : ∐ n = 1 ∞ S n → F ∗ = F \ { 0 } define a function D ω on each M n ( F ) by D ω ( A ) = ∑ σ ∈ S n ω ( σ ) ∏ i = 1 n A ( i , σ ( i ) ) . Let rk ω ( A ) be the maximal k such that there exists a k × k submatrix B of A with D ω ( B )≠0. For S ⊂ M n ( F ) let ρ ω ( S ) = max { rk ω ( A ) : A ∈ S } . The first extension of (1) concerns general weight functions. T heorem : For any ω as above and ℬ ⊂ [ n ] 2 max { dim W : W ≤ M ℬ ( F ) , ρ ω ( W ) ≤ k } = max { ∣ ℬ ′ ∣ : ℬ ′ ⊂ ℬ , ν b ( ℬ ′ ) ≤ k } Let A n ( F ) denote the space of alternating matrices in M n ( F ) . For a graph G ⊂ ( [ n ] 2 ) let A G ( F ) = { A ∈ A n ( F ) : A ( i , j ) = 0 if { i , j } ∉ G } . Let ν ( G ) denote the matching number of G . The second extension of (1) concerns general graphs. T heorem : For any G ⊂ ( [ n ] 2 ) max { dim U : U ≤ A G ( F ) , ρ ( U ) ≤ 2 k } = max { ∣ G ′ ∣ : G ′ ⊂ G , ν ( G ′ ) ≤ k }.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Graph theory</subject><subject>Group Theory and Generalizations</subject><subject>Matching</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Subspaces</subject><subject>Theorems</subject><subject>Theoretical</subject><subject>Weighting functions</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt_gLcFz9GZycduj1L8gooXPYdsNlm3tts1aaH615uygidPMzDvveH9GLtEuEaA8iYhVkpzIMFJQcX1EZug0opXCvGYTQAIOWFJp-wspSWAEiWKCRPPdt-t7apofe-jXXXfvimi7T-Kri_aaIf3zuXr2m5jty_SYJ1P5-wk2FXyF79zyt7u717nj3zx8vA0v11wJ1BvuRYNCitlULIOtRSqgdoF7QM1NZGmEGAmnCRhhQOwDeVVe-ekcyAdzsSUXY25Q9x87nzamuVmF_v80lBVKqlmIMuswlHl4ial6IMZYm4UvwyCObAxIxuT2ZgDG6Ozh0ZPytq-9fEv-X_TD5FjZfU</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Guterman, Alexander</creator><creator>Meshulam, Roy</creator><creator>Spiridonov, Igor</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230901</creationdate><title>Maximal generalized rank in graphical matrix spaces</title><author>Guterman, Alexander ; Meshulam, Roy ; Spiridonov, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-63d13a44f54bfb435d0bcf6ef2db2262ff093c423a3c00ad24236ecc4cc04c193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Graph theory</topic><topic>Group Theory and Generalizations</topic><topic>Matching</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Subspaces</topic><topic>Theorems</topic><topic>Theoretical</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guterman, Alexander</creatorcontrib><creatorcontrib>Meshulam, Roy</creatorcontrib><creatorcontrib>Spiridonov, Igor</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guterman, Alexander</au><au>Meshulam, Roy</au><au>Spiridonov, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximal generalized rank in graphical matrix spaces</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>256</volume><issue>1</issue><spage>297</spage><epage>309</epage><pages>297-309</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>Let M n ( F ) be the space of n × n matrices over a field F . For a subset ℬ ⊂ [ n ] 2 let M ℬ ( F ) = { A ∈ M n ( F ) : A ( i , j ) ∉ ℬ } . Let ν b ( ℬ ) denote the matching number of the n by n bipartite graph determined by ℬ . For S ⊂ M n ( F ) let ρ ( S ) = max{rk( A ): A ∈ S }. Li, Qiao, Wigderson, Wigderson and Zhang [6] have recently proved the following characterization of the maximal dimension of bounded rank subspaces of M ℬ ( F ) . Theorem (Li, Qiao, Wigderson, Wigderson, Zhang): For any ℬ ⊂ [ n ] 2 (1) max { dim W : W ≤ M ℬ ( F ) , ρ ( W ) ≤ k } = max { ∣ ℬ ′ ∣ : ℬ ′ ⊂ ℬ , ν b ( ℬ ′ ) ≤ k } . The main results of this note are two extensions of (1). Let S n denote the symmetric group on [ n ]. For ω : ∐ n = 1 ∞ S n → F ∗ = F \ { 0 } define a function D ω on each M n ( F ) by D ω ( A ) = ∑ σ ∈ S n ω ( σ ) ∏ i = 1 n A ( i , σ ( i ) ) . Let rk ω ( A ) be the maximal k such that there exists a k × k submatrix B of A with D ω ( B )≠0. For S ⊂ M n ( F ) let ρ ω ( S ) = max { rk ω ( A ) : A ∈ S } . The first extension of (1) concerns general weight functions. T heorem : For any ω as above and ℬ ⊂ [ n ] 2 max { dim W : W ≤ M ℬ ( F ) , ρ ω ( W ) ≤ k } = max { ∣ ℬ ′ ∣ : ℬ ′ ⊂ ℬ , ν b ( ℬ ′ ) ≤ k } Let A n ( F ) denote the space of alternating matrices in M n ( F ) . For a graph G ⊂ ( [ n ] 2 ) let A G ( F ) = { A ∈ A n ( F ) : A ( i , j ) = 0 if { i , j } ∉ G } . Let ν ( G ) denote the matching number of G . The second extension of (1) concerns general graphs. T heorem : For any G ⊂ ( [ n ] 2 ) max { dim U : U ≤ A G ( F ) , ρ ( U ) ≤ 2 k } = max { ∣ G ′ ∣ : G ′ ⊂ G , ν ( G ′ ) ≤ k }.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-023-2508-6</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-2172
ispartof Israel journal of mathematics, 2023-09, Vol.256 (1), p.297-309
issn 0021-2172
1565-8511
language eng
recordid cdi_proquest_journals_2875459047
source Springer Nature
subjects Algebra
Analysis
Applications of Mathematics
Graph theory
Group Theory and Generalizations
Matching
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Subspaces
Theorems
Theoretical
Weighting functions
title Maximal generalized rank in graphical matrix spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A59%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximal%20generalized%20rank%20in%20graphical%20matrix%20spaces&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Guterman,%20Alexander&rft.date=2023-09-01&rft.volume=256&rft.issue=1&rft.spage=297&rft.epage=309&rft.pages=297-309&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-023-2508-6&rft_dat=%3Cproquest_cross%3E2875459047%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-63d13a44f54bfb435d0bcf6ef2db2262ff093c423a3c00ad24236ecc4cc04c193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2875459047&rft_id=info:pmid/&rfr_iscdi=true