Loading…
Maximal generalized rank in graphical matrix spaces
Let M n ( F ) be the space of n × n matrices over a field F . For a subset ℬ ⊂ [ n ] 2 let M ℬ ( F ) = { A ∈ M n ( F ) : A ( i , j ) ∉ ℬ } . Let ν b ( ℬ ) denote the matching number of the n by n bipartite graph determined by ℬ . For S ⊂ M n ( F ) let ρ ( S ) = max{rk( A ): A ∈ S }. Li, Qiao, Wigder...
Saved in:
Published in: | Israel journal of mathematics 2023-09, Vol.256 (1), p.297-309 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-63d13a44f54bfb435d0bcf6ef2db2262ff093c423a3c00ad24236ecc4cc04c193 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-63d13a44f54bfb435d0bcf6ef2db2262ff093c423a3c00ad24236ecc4cc04c193 |
container_end_page | 309 |
container_issue | 1 |
container_start_page | 297 |
container_title | Israel journal of mathematics |
container_volume | 256 |
creator | Guterman, Alexander Meshulam, Roy Spiridonov, Igor |
description | Let
M
n
(
F
)
be the space of
n
×
n
matrices over a field
F
. For a subset
ℬ
⊂
[
n
]
2
let
M
ℬ
(
F
)
=
{
A
∈
M
n
(
F
)
:
A
(
i
,
j
)
∉
ℬ
}
. Let
ν
b
(
ℬ
)
denote the matching number of the
n
by
n
bipartite graph determined by
ℬ
. For
S
⊂
M
n
(
F
)
let
ρ
(
S
) = max{rk(
A
):
A
∈
S
}. Li, Qiao, Wigderson, Wigderson and Zhang [6] have recently proved the following characterization of the maximal dimension of bounded rank subspaces of
M
ℬ
(
F
)
.
Theorem (Li, Qiao, Wigderson, Wigderson, Zhang):
For any
ℬ
⊂
[
n
]
2
(1)
max
{
dim
W
:
W
≤
M
ℬ
(
F
)
,
ρ
(
W
)
≤
k
}
=
max
{
∣
ℬ
′
∣
:
ℬ
′
⊂
ℬ
,
ν
b
(
ℬ
′
)
≤
k
}
.
The main results of this note are two extensions of (1). Let
S
n
denote the symmetric group on [
n
]. For
ω
:
∐
n
=
1
∞
S
n
→
F
∗
=
F
\
{
0
}
define a function
D
ω
on each
M
n
(
F
)
by
D
ω
(
A
)
=
∑
σ
∈
S
n
ω
(
σ
)
∏
i
=
1
n
A
(
i
,
σ
(
i
)
)
. Let rk
ω
(
A
) be the maximal
k
such that there exists a
k
×
k
submatrix
B
of
A
with
D
ω
(
B
)≠0. For
S
⊂
M
n
(
F
)
let
ρ
ω
(
S
)
=
max
{
rk
ω
(
A
)
:
A
∈
S
}
. The first extension of (1) concerns general weight functions.
T
heorem
:
For any ω as above and
ℬ
⊂
[
n
]
2
max
{
dim
W
:
W
≤
M
ℬ
(
F
)
,
ρ
ω
(
W
)
≤
k
}
=
max
{
∣
ℬ
′
∣
:
ℬ
′
⊂
ℬ
,
ν
b
(
ℬ
′
)
≤
k
}
Let
A
n
(
F
)
denote the space of alternating matrices in
M
n
(
F
)
. For a graph
G
⊂
(
[
n
]
2
)
let
A
G
(
F
)
=
{
A
∈
A
n
(
F
)
:
A
(
i
,
j
)
=
0
if
{
i
,
j
}
∉
G
}
. Let
ν
(
G
)
denote the matching number of
G
. The second extension of (1) concerns general graphs.
T
heorem
:
For any
G
⊂
(
[
n
]
2
)
max
{
dim
U
:
U
≤
A
G
(
F
)
,
ρ
(
U
)
≤
2
k
}
=
max
{
∣
G
′
∣
:
G
′
⊂
G
,
ν
(
G
′
)
≤
k
}. |
doi_str_mv | 10.1007/s11856-023-2508-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2875459047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2875459047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-63d13a44f54bfb435d0bcf6ef2db2262ff093c423a3c00ad24236ecc4cc04c193</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt_gLcFz9GZycduj1L8gooXPYdsNlm3tts1aaH615uygidPMzDvveH9GLtEuEaA8iYhVkpzIMFJQcX1EZug0opXCvGYTQAIOWFJp-wspSWAEiWKCRPPdt-t7apofe-jXXXfvimi7T-Kri_aaIf3zuXr2m5jty_SYJ1P5-wk2FXyF79zyt7u717nj3zx8vA0v11wJ1BvuRYNCitlULIOtRSqgdoF7QM1NZGmEGAmnCRhhQOwDeVVe-ekcyAdzsSUXY25Q9x87nzamuVmF_v80lBVKqlmIMuswlHl4ial6IMZYm4UvwyCObAxIxuT2ZgDG6Ozh0ZPytq-9fEv-X_TD5FjZfU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875459047</pqid></control><display><type>article</type><title>Maximal generalized rank in graphical matrix spaces</title><source>Springer Nature</source><creator>Guterman, Alexander ; Meshulam, Roy ; Spiridonov, Igor</creator><creatorcontrib>Guterman, Alexander ; Meshulam, Roy ; Spiridonov, Igor</creatorcontrib><description>Let
M
n
(
F
)
be the space of
n
×
n
matrices over a field
F
. For a subset
ℬ
⊂
[
n
]
2
let
M
ℬ
(
F
)
=
{
A
∈
M
n
(
F
)
:
A
(
i
,
j
)
∉
ℬ
}
. Let
ν
b
(
ℬ
)
denote the matching number of the
n
by
n
bipartite graph determined by
ℬ
. For
S
⊂
M
n
(
F
)
let
ρ
(
S
) = max{rk(
A
):
A
∈
S
}. Li, Qiao, Wigderson, Wigderson and Zhang [6] have recently proved the following characterization of the maximal dimension of bounded rank subspaces of
M
ℬ
(
F
)
.
Theorem (Li, Qiao, Wigderson, Wigderson, Zhang):
For any
ℬ
⊂
[
n
]
2
(1)
max
{
dim
W
:
W
≤
M
ℬ
(
F
)
,
ρ
(
W
)
≤
k
}
=
max
{
∣
ℬ
′
∣
:
ℬ
′
⊂
ℬ
,
ν
b
(
ℬ
′
)
≤
k
}
.
The main results of this note are two extensions of (1). Let
S
n
denote the symmetric group on [
n
]. For
ω
:
∐
n
=
1
∞
S
n
→
F
∗
=
F
\
{
0
}
define a function
D
ω
on each
M
n
(
F
)
by
D
ω
(
A
)
=
∑
σ
∈
S
n
ω
(
σ
)
∏
i
=
1
n
A
(
i
,
σ
(
i
)
)
. Let rk
ω
(
A
) be the maximal
k
such that there exists a
k
×
k
submatrix
B
of
A
with
D
ω
(
B
)≠0. For
S
⊂
M
n
(
F
)
let
ρ
ω
(
S
)
=
max
{
rk
ω
(
A
)
:
A
∈
S
}
. The first extension of (1) concerns general weight functions.
T
heorem
:
For any ω as above and
ℬ
⊂
[
n
]
2
max
{
dim
W
:
W
≤
M
ℬ
(
F
)
,
ρ
ω
(
W
)
≤
k
}
=
max
{
∣
ℬ
′
∣
:
ℬ
′
⊂
ℬ
,
ν
b
(
ℬ
′
)
≤
k
}
Let
A
n
(
F
)
denote the space of alternating matrices in
M
n
(
F
)
. For a graph
G
⊂
(
[
n
]
2
)
let
A
G
(
F
)
=
{
A
∈
A
n
(
F
)
:
A
(
i
,
j
)
=
0
if
{
i
,
j
}
∉
G
}
. Let
ν
(
G
)
denote the matching number of
G
. The second extension of (1) concerns general graphs.
T
heorem
:
For any
G
⊂
(
[
n
]
2
)
max
{
dim
U
:
U
≤
A
G
(
F
)
,
ρ
(
U
)
≤
2
k
}
=
max
{
∣
G
′
∣
:
G
′
⊂
G
,
ν
(
G
′
)
≤
k
}.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-023-2508-6</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Graph theory ; Group Theory and Generalizations ; Matching ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Subspaces ; Theorems ; Theoretical ; Weighting functions</subject><ispartof>Israel journal of mathematics, 2023-09, Vol.256 (1), p.297-309</ispartof><rights>The Hebrew University of Jerusalem 2023</rights><rights>The Hebrew University of Jerusalem 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-63d13a44f54bfb435d0bcf6ef2db2262ff093c423a3c00ad24236ecc4cc04c193</citedby><cites>FETCH-LOGICAL-c316t-63d13a44f54bfb435d0bcf6ef2db2262ff093c423a3c00ad24236ecc4cc04c193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Guterman, Alexander</creatorcontrib><creatorcontrib>Meshulam, Roy</creatorcontrib><creatorcontrib>Spiridonov, Igor</creatorcontrib><title>Maximal generalized rank in graphical matrix spaces</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>Let
M
n
(
F
)
be the space of
n
×
n
matrices over a field
F
. For a subset
ℬ
⊂
[
n
]
2
let
M
ℬ
(
F
)
=
{
A
∈
M
n
(
F
)
:
A
(
i
,
j
)
∉
ℬ
}
. Let
ν
b
(
ℬ
)
denote the matching number of the
n
by
n
bipartite graph determined by
ℬ
. For
S
⊂
M
n
(
F
)
let
ρ
(
S
) = max{rk(
A
):
A
∈
S
}. Li, Qiao, Wigderson, Wigderson and Zhang [6] have recently proved the following characterization of the maximal dimension of bounded rank subspaces of
M
ℬ
(
F
)
.
Theorem (Li, Qiao, Wigderson, Wigderson, Zhang):
For any
ℬ
⊂
[
n
]
2
(1)
max
{
dim
W
:
W
≤
M
ℬ
(
F
)
,
ρ
(
W
)
≤
k
}
=
max
{
∣
ℬ
′
∣
:
ℬ
′
⊂
ℬ
,
ν
b
(
ℬ
′
)
≤
k
}
.
The main results of this note are two extensions of (1). Let
S
n
denote the symmetric group on [
n
]. For
ω
:
∐
n
=
1
∞
S
n
→
F
∗
=
F
\
{
0
}
define a function
D
ω
on each
M
n
(
F
)
by
D
ω
(
A
)
=
∑
σ
∈
S
n
ω
(
σ
)
∏
i
=
1
n
A
(
i
,
σ
(
i
)
)
. Let rk
ω
(
A
) be the maximal
k
such that there exists a
k
×
k
submatrix
B
of
A
with
D
ω
(
B
)≠0. For
S
⊂
M
n
(
F
)
let
ρ
ω
(
S
)
=
max
{
rk
ω
(
A
)
:
A
∈
S
}
. The first extension of (1) concerns general weight functions.
T
heorem
:
For any ω as above and
ℬ
⊂
[
n
]
2
max
{
dim
W
:
W
≤
M
ℬ
(
F
)
,
ρ
ω
(
W
)
≤
k
}
=
max
{
∣
ℬ
′
∣
:
ℬ
′
⊂
ℬ
,
ν
b
(
ℬ
′
)
≤
k
}
Let
A
n
(
F
)
denote the space of alternating matrices in
M
n
(
F
)
. For a graph
G
⊂
(
[
n
]
2
)
let
A
G
(
F
)
=
{
A
∈
A
n
(
F
)
:
A
(
i
,
j
)
=
0
if
{
i
,
j
}
∉
G
}
. Let
ν
(
G
)
denote the matching number of
G
. The second extension of (1) concerns general graphs.
T
heorem
:
For any
G
⊂
(
[
n
]
2
)
max
{
dim
U
:
U
≤
A
G
(
F
)
,
ρ
(
U
)
≤
2
k
}
=
max
{
∣
G
′
∣
:
G
′
⊂
G
,
ν
(
G
′
)
≤
k
}.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Graph theory</subject><subject>Group Theory and Generalizations</subject><subject>Matching</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Subspaces</subject><subject>Theorems</subject><subject>Theoretical</subject><subject>Weighting functions</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt_gLcFz9GZycduj1L8gooXPYdsNlm3tts1aaH615uygidPMzDvveH9GLtEuEaA8iYhVkpzIMFJQcX1EZug0opXCvGYTQAIOWFJp-wspSWAEiWKCRPPdt-t7apofe-jXXXfvimi7T-Kri_aaIf3zuXr2m5jty_SYJ1P5-wk2FXyF79zyt7u717nj3zx8vA0v11wJ1BvuRYNCitlULIOtRSqgdoF7QM1NZGmEGAmnCRhhQOwDeVVe-ekcyAdzsSUXY25Q9x87nzamuVmF_v80lBVKqlmIMuswlHl4ial6IMZYm4UvwyCObAxIxuT2ZgDG6Ozh0ZPytq-9fEv-X_TD5FjZfU</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Guterman, Alexander</creator><creator>Meshulam, Roy</creator><creator>Spiridonov, Igor</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230901</creationdate><title>Maximal generalized rank in graphical matrix spaces</title><author>Guterman, Alexander ; Meshulam, Roy ; Spiridonov, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-63d13a44f54bfb435d0bcf6ef2db2262ff093c423a3c00ad24236ecc4cc04c193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Graph theory</topic><topic>Group Theory and Generalizations</topic><topic>Matching</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Subspaces</topic><topic>Theorems</topic><topic>Theoretical</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guterman, Alexander</creatorcontrib><creatorcontrib>Meshulam, Roy</creatorcontrib><creatorcontrib>Spiridonov, Igor</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guterman, Alexander</au><au>Meshulam, Roy</au><au>Spiridonov, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximal generalized rank in graphical matrix spaces</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>256</volume><issue>1</issue><spage>297</spage><epage>309</epage><pages>297-309</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>Let
M
n
(
F
)
be the space of
n
×
n
matrices over a field
F
. For a subset
ℬ
⊂
[
n
]
2
let
M
ℬ
(
F
)
=
{
A
∈
M
n
(
F
)
:
A
(
i
,
j
)
∉
ℬ
}
. Let
ν
b
(
ℬ
)
denote the matching number of the
n
by
n
bipartite graph determined by
ℬ
. For
S
⊂
M
n
(
F
)
let
ρ
(
S
) = max{rk(
A
):
A
∈
S
}. Li, Qiao, Wigderson, Wigderson and Zhang [6] have recently proved the following characterization of the maximal dimension of bounded rank subspaces of
M
ℬ
(
F
)
.
Theorem (Li, Qiao, Wigderson, Wigderson, Zhang):
For any
ℬ
⊂
[
n
]
2
(1)
max
{
dim
W
:
W
≤
M
ℬ
(
F
)
,
ρ
(
W
)
≤
k
}
=
max
{
∣
ℬ
′
∣
:
ℬ
′
⊂
ℬ
,
ν
b
(
ℬ
′
)
≤
k
}
.
The main results of this note are two extensions of (1). Let
S
n
denote the symmetric group on [
n
]. For
ω
:
∐
n
=
1
∞
S
n
→
F
∗
=
F
\
{
0
}
define a function
D
ω
on each
M
n
(
F
)
by
D
ω
(
A
)
=
∑
σ
∈
S
n
ω
(
σ
)
∏
i
=
1
n
A
(
i
,
σ
(
i
)
)
. Let rk
ω
(
A
) be the maximal
k
such that there exists a
k
×
k
submatrix
B
of
A
with
D
ω
(
B
)≠0. For
S
⊂
M
n
(
F
)
let
ρ
ω
(
S
)
=
max
{
rk
ω
(
A
)
:
A
∈
S
}
. The first extension of (1) concerns general weight functions.
T
heorem
:
For any ω as above and
ℬ
⊂
[
n
]
2
max
{
dim
W
:
W
≤
M
ℬ
(
F
)
,
ρ
ω
(
W
)
≤
k
}
=
max
{
∣
ℬ
′
∣
:
ℬ
′
⊂
ℬ
,
ν
b
(
ℬ
′
)
≤
k
}
Let
A
n
(
F
)
denote the space of alternating matrices in
M
n
(
F
)
. For a graph
G
⊂
(
[
n
]
2
)
let
A
G
(
F
)
=
{
A
∈
A
n
(
F
)
:
A
(
i
,
j
)
=
0
if
{
i
,
j
}
∉
G
}
. Let
ν
(
G
)
denote the matching number of
G
. The second extension of (1) concerns general graphs.
T
heorem
:
For any
G
⊂
(
[
n
]
2
)
max
{
dim
U
:
U
≤
A
G
(
F
)
,
ρ
(
U
)
≤
2
k
}
=
max
{
∣
G
′
∣
:
G
′
⊂
G
,
ν
(
G
′
)
≤
k
}.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-023-2508-6</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-2172 |
ispartof | Israel journal of mathematics, 2023-09, Vol.256 (1), p.297-309 |
issn | 0021-2172 1565-8511 |
language | eng |
recordid | cdi_proquest_journals_2875459047 |
source | Springer Nature |
subjects | Algebra Analysis Applications of Mathematics Graph theory Group Theory and Generalizations Matching Mathematical and Computational Physics Mathematics Mathematics and Statistics Subspaces Theorems Theoretical Weighting functions |
title | Maximal generalized rank in graphical matrix spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A59%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximal%20generalized%20rank%20in%20graphical%20matrix%20spaces&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Guterman,%20Alexander&rft.date=2023-09-01&rft.volume=256&rft.issue=1&rft.spage=297&rft.epage=309&rft.pages=297-309&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-023-2508-6&rft_dat=%3Cproquest_cross%3E2875459047%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-63d13a44f54bfb435d0bcf6ef2db2262ff093c423a3c00ad24236ecc4cc04c193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2875459047&rft_id=info:pmid/&rfr_iscdi=true |