Loading…
Numerical solutions of 2D stochastic time‐fractional Sine–Gordon equation in the Caputo sense
We study the two‐dimensional stochastic time‐fractional Sine–Gordon equation (2D ST‐FS‐G) and provide a solution for it. We use the new clique polynomial method to obtain a numerical solution to the 2D TFS‐G equation. In this technique, the clique polynomial is considered as a basic function for ope...
Saved in:
Published in: | International journal of numerical modelling 2023-11, Vol.36 (6) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 6 |
container_start_page | |
container_title | International journal of numerical modelling |
container_volume | 36 |
creator | Eidinejad, Zahra Saadati, Reza Vahidi, Javad Li, Chenkuan |
description | We study the two‐dimensional stochastic time‐fractional Sine–Gordon equation (2D ST‐FS‐G) and provide a solution for it. We use the new clique polynomial method to obtain a numerical solution to the 2D TFS‐G equation. In this technique, the clique polynomial is considered as a basic function for operational matrices. By converting the 2D ST‐FS‐G equation to algebraic equations, a solution is obtained for the desired equation, which clearly shows that this approach is suitable and accurate for dealing with the equation. We further present the error boundary for the obtained approximation of the desired three‐variable function based on the clique polynomial. Finally, we compare some numerical results obtained with the exact ones by a few practical examples. |
doi_str_mv | 10.1002/jnm.3121 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2876145133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2876145133</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-1b68e50d80ac052a3f4b7171e662283efc1f3956fe05258348dd136db09908743</originalsourceid><addsrcrecordid>eNotj89KxDAYxIMoWFfBRwh47vp9-fonPUrVVVj0oJ6XtE3YlrbpNsndRxB8Q5_ELnoamPkxzDB2jbBGAHHbjcOaUOAJixCKIkYBySmLQBZJTJTDObtwrgMAwlRETL2EQc9trXrubB98a0fHreHinjtv671yvq25bwf98_llZlUfiQV-a8fF-d7YubEj14egjgFvR-73mpdqCt5yp0enL9mZUb3TV_-6Yh-PD-_lU7x93TyXd9t4Qkk-xiqTOoVGgqohFYpMUuWYo84yISRpU6OhIs2MXtJUUiKbBilrquUkyDyhFbv5651mewja-V1nw7xsdTsh8wyTFInoFwJsV0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876145133</pqid></control><display><type>article</type><title>Numerical solutions of 2D stochastic time‐fractional Sine–Gordon equation in the Caputo sense</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Eidinejad, Zahra ; Saadati, Reza ; Vahidi, Javad ; Li, Chenkuan</creator><creatorcontrib>Eidinejad, Zahra ; Saadati, Reza ; Vahidi, Javad ; Li, Chenkuan</creatorcontrib><description>We study the two‐dimensional stochastic time‐fractional Sine–Gordon equation (2D ST‐FS‐G) and provide a solution for it. We use the new clique polynomial method to obtain a numerical solution to the 2D TFS‐G equation. In this technique, the clique polynomial is considered as a basic function for operational matrices. By converting the 2D ST‐FS‐G equation to algebraic equations, a solution is obtained for the desired equation, which clearly shows that this approach is suitable and accurate for dealing with the equation. We further present the error boundary for the obtained approximation of the desired three‐variable function based on the clique polynomial. Finally, we compare some numerical results obtained with the exact ones by a few practical examples.</description><identifier>ISSN: 0894-3370</identifier><identifier>EISSN: 1099-1204</identifier><identifier>DOI: 10.1002/jnm.3121</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Basic converters ; Polynomials</subject><ispartof>International journal of numerical modelling, 2023-11, Vol.36 (6)</ispartof><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Eidinejad, Zahra</creatorcontrib><creatorcontrib>Saadati, Reza</creatorcontrib><creatorcontrib>Vahidi, Javad</creatorcontrib><creatorcontrib>Li, Chenkuan</creatorcontrib><title>Numerical solutions of 2D stochastic time‐fractional Sine–Gordon equation in the Caputo sense</title><title>International journal of numerical modelling</title><description>We study the two‐dimensional stochastic time‐fractional Sine–Gordon equation (2D ST‐FS‐G) and provide a solution for it. We use the new clique polynomial method to obtain a numerical solution to the 2D TFS‐G equation. In this technique, the clique polynomial is considered as a basic function for operational matrices. By converting the 2D ST‐FS‐G equation to algebraic equations, a solution is obtained for the desired equation, which clearly shows that this approach is suitable and accurate for dealing with the equation. We further present the error boundary for the obtained approximation of the desired three‐variable function based on the clique polynomial. Finally, we compare some numerical results obtained with the exact ones by a few practical examples.</description><subject>Basic converters</subject><subject>Polynomials</subject><issn>0894-3370</issn><issn>1099-1204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotj89KxDAYxIMoWFfBRwh47vp9-fonPUrVVVj0oJ6XtE3YlrbpNsndRxB8Q5_ELnoamPkxzDB2jbBGAHHbjcOaUOAJixCKIkYBySmLQBZJTJTDObtwrgMAwlRETL2EQc9trXrubB98a0fHreHinjtv671yvq25bwf98_llZlUfiQV-a8fF-d7YubEj14egjgFvR-73mpdqCt5yp0enL9mZUb3TV_-6Yh-PD-_lU7x93TyXd9t4Qkk-xiqTOoVGgqohFYpMUuWYo84yISRpU6OhIs2MXtJUUiKbBilrquUkyDyhFbv5651mewja-V1nw7xsdTsh8wyTFInoFwJsV0o</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Eidinejad, Zahra</creator><creator>Saadati, Reza</creator><creator>Vahidi, Javad</creator><creator>Li, Chenkuan</creator><general>Wiley Subscription Services, Inc</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231101</creationdate><title>Numerical solutions of 2D stochastic time‐fractional Sine–Gordon equation in the Caputo sense</title><author>Eidinejad, Zahra ; Saadati, Reza ; Vahidi, Javad ; Li, Chenkuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-1b68e50d80ac052a3f4b7171e662283efc1f3956fe05258348dd136db09908743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Basic converters</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eidinejad, Zahra</creatorcontrib><creatorcontrib>Saadati, Reza</creatorcontrib><creatorcontrib>Vahidi, Javad</creatorcontrib><creatorcontrib>Li, Chenkuan</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of numerical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eidinejad, Zahra</au><au>Saadati, Reza</au><au>Vahidi, Javad</au><au>Li, Chenkuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solutions of 2D stochastic time‐fractional Sine–Gordon equation in the Caputo sense</atitle><jtitle>International journal of numerical modelling</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>36</volume><issue>6</issue><issn>0894-3370</issn><eissn>1099-1204</eissn><abstract>We study the two‐dimensional stochastic time‐fractional Sine–Gordon equation (2D ST‐FS‐G) and provide a solution for it. We use the new clique polynomial method to obtain a numerical solution to the 2D TFS‐G equation. In this technique, the clique polynomial is considered as a basic function for operational matrices. By converting the 2D ST‐FS‐G equation to algebraic equations, a solution is obtained for the desired equation, which clearly shows that this approach is suitable and accurate for dealing with the equation. We further present the error boundary for the obtained approximation of the desired three‐variable function based on the clique polynomial. Finally, we compare some numerical results obtained with the exact ones by a few practical examples.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jnm.3121</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-3370 |
ispartof | International journal of numerical modelling, 2023-11, Vol.36 (6) |
issn | 0894-3370 1099-1204 |
language | eng |
recordid | cdi_proquest_journals_2876145133 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Basic converters Polynomials |
title | Numerical solutions of 2D stochastic time‐fractional Sine–Gordon equation in the Caputo sense |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A40%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solutions%20of%202D%20stochastic%20time%E2%80%90fractional%20Sine%E2%80%93Gordon%20equation%20in%20the%20Caputo%20sense&rft.jtitle=International%20journal%20of%20numerical%20modelling&rft.au=Eidinejad,%20Zahra&rft.date=2023-11-01&rft.volume=36&rft.issue=6&rft.issn=0894-3370&rft.eissn=1099-1204&rft_id=info:doi/10.1002/jnm.3121&rft_dat=%3Cproquest%3E2876145133%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-1b68e50d80ac052a3f4b7171e662283efc1f3956fe05258348dd136db09908743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2876145133&rft_id=info:pmid/&rfr_iscdi=true |