Loading…

Numerical solutions of 2D stochastic time‐fractional Sine–Gordon equation in the Caputo sense

We study the two‐dimensional stochastic time‐fractional Sine–Gordon equation (2D ST‐FS‐G) and provide a solution for it. We use the new clique polynomial method to obtain a numerical solution to the 2D TFS‐G equation. In this technique, the clique polynomial is considered as a basic function for ope...

Full description

Saved in:
Bibliographic Details
Published in:International journal of numerical modelling 2023-11, Vol.36 (6)
Main Authors: Eidinejad, Zahra, Saadati, Reza, Vahidi, Javad, Li, Chenkuan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 6
container_start_page
container_title International journal of numerical modelling
container_volume 36
creator Eidinejad, Zahra
Saadati, Reza
Vahidi, Javad
Li, Chenkuan
description We study the two‐dimensional stochastic time‐fractional Sine–Gordon equation (2D ST‐FS‐G) and provide a solution for it. We use the new clique polynomial method to obtain a numerical solution to the 2D TFS‐G equation. In this technique, the clique polynomial is considered as a basic function for operational matrices. By converting the 2D ST‐FS‐G equation to algebraic equations, a solution is obtained for the desired equation, which clearly shows that this approach is suitable and accurate for dealing with the equation. We further present the error boundary for the obtained approximation of the desired three‐variable function based on the clique polynomial. Finally, we compare some numerical results obtained with the exact ones by a few practical examples.
doi_str_mv 10.1002/jnm.3121
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2876145133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2876145133</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-1b68e50d80ac052a3f4b7171e662283efc1f3956fe05258348dd136db09908743</originalsourceid><addsrcrecordid>eNotj89KxDAYxIMoWFfBRwh47vp9-fonPUrVVVj0oJ6XtE3YlrbpNsndRxB8Q5_ELnoamPkxzDB2jbBGAHHbjcOaUOAJixCKIkYBySmLQBZJTJTDObtwrgMAwlRETL2EQc9trXrubB98a0fHreHinjtv671yvq25bwf98_llZlUfiQV-a8fF-d7YubEj14egjgFvR-73mpdqCt5yp0enL9mZUb3TV_-6Yh-PD-_lU7x93TyXd9t4Qkk-xiqTOoVGgqohFYpMUuWYo84yISRpU6OhIs2MXtJUUiKbBilrquUkyDyhFbv5651mewja-V1nw7xsdTsh8wyTFInoFwJsV0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876145133</pqid></control><display><type>article</type><title>Numerical solutions of 2D stochastic time‐fractional Sine–Gordon equation in the Caputo sense</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Eidinejad, Zahra ; Saadati, Reza ; Vahidi, Javad ; Li, Chenkuan</creator><creatorcontrib>Eidinejad, Zahra ; Saadati, Reza ; Vahidi, Javad ; Li, Chenkuan</creatorcontrib><description>We study the two‐dimensional stochastic time‐fractional Sine–Gordon equation (2D ST‐FS‐G) and provide a solution for it. We use the new clique polynomial method to obtain a numerical solution to the 2D TFS‐G equation. In this technique, the clique polynomial is considered as a basic function for operational matrices. By converting the 2D ST‐FS‐G equation to algebraic equations, a solution is obtained for the desired equation, which clearly shows that this approach is suitable and accurate for dealing with the equation. We further present the error boundary for the obtained approximation of the desired three‐variable function based on the clique polynomial. Finally, we compare some numerical results obtained with the exact ones by a few practical examples.</description><identifier>ISSN: 0894-3370</identifier><identifier>EISSN: 1099-1204</identifier><identifier>DOI: 10.1002/jnm.3121</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Basic converters ; Polynomials</subject><ispartof>International journal of numerical modelling, 2023-11, Vol.36 (6)</ispartof><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Eidinejad, Zahra</creatorcontrib><creatorcontrib>Saadati, Reza</creatorcontrib><creatorcontrib>Vahidi, Javad</creatorcontrib><creatorcontrib>Li, Chenkuan</creatorcontrib><title>Numerical solutions of 2D stochastic time‐fractional Sine–Gordon equation in the Caputo sense</title><title>International journal of numerical modelling</title><description>We study the two‐dimensional stochastic time‐fractional Sine–Gordon equation (2D ST‐FS‐G) and provide a solution for it. We use the new clique polynomial method to obtain a numerical solution to the 2D TFS‐G equation. In this technique, the clique polynomial is considered as a basic function for operational matrices. By converting the 2D ST‐FS‐G equation to algebraic equations, a solution is obtained for the desired equation, which clearly shows that this approach is suitable and accurate for dealing with the equation. We further present the error boundary for the obtained approximation of the desired three‐variable function based on the clique polynomial. Finally, we compare some numerical results obtained with the exact ones by a few practical examples.</description><subject>Basic converters</subject><subject>Polynomials</subject><issn>0894-3370</issn><issn>1099-1204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotj89KxDAYxIMoWFfBRwh47vp9-fonPUrVVVj0oJ6XtE3YlrbpNsndRxB8Q5_ELnoamPkxzDB2jbBGAHHbjcOaUOAJixCKIkYBySmLQBZJTJTDObtwrgMAwlRETL2EQc9trXrubB98a0fHreHinjtv671yvq25bwf98_llZlUfiQV-a8fF-d7YubEj14egjgFvR-73mpdqCt5yp0enL9mZUb3TV_-6Yh-PD-_lU7x93TyXd9t4Qkk-xiqTOoVGgqohFYpMUuWYo84yISRpU6OhIs2MXtJUUiKbBilrquUkyDyhFbv5651mewja-V1nw7xsdTsh8wyTFInoFwJsV0o</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Eidinejad, Zahra</creator><creator>Saadati, Reza</creator><creator>Vahidi, Javad</creator><creator>Li, Chenkuan</creator><general>Wiley Subscription Services, Inc</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231101</creationdate><title>Numerical solutions of 2D stochastic time‐fractional Sine–Gordon equation in the Caputo sense</title><author>Eidinejad, Zahra ; Saadati, Reza ; Vahidi, Javad ; Li, Chenkuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-1b68e50d80ac052a3f4b7171e662283efc1f3956fe05258348dd136db09908743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Basic converters</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eidinejad, Zahra</creatorcontrib><creatorcontrib>Saadati, Reza</creatorcontrib><creatorcontrib>Vahidi, Javad</creatorcontrib><creatorcontrib>Li, Chenkuan</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of numerical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eidinejad, Zahra</au><au>Saadati, Reza</au><au>Vahidi, Javad</au><au>Li, Chenkuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solutions of 2D stochastic time‐fractional Sine–Gordon equation in the Caputo sense</atitle><jtitle>International journal of numerical modelling</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>36</volume><issue>6</issue><issn>0894-3370</issn><eissn>1099-1204</eissn><abstract>We study the two‐dimensional stochastic time‐fractional Sine–Gordon equation (2D ST‐FS‐G) and provide a solution for it. We use the new clique polynomial method to obtain a numerical solution to the 2D TFS‐G equation. In this technique, the clique polynomial is considered as a basic function for operational matrices. By converting the 2D ST‐FS‐G equation to algebraic equations, a solution is obtained for the desired equation, which clearly shows that this approach is suitable and accurate for dealing with the equation. We further present the error boundary for the obtained approximation of the desired three‐variable function based on the clique polynomial. Finally, we compare some numerical results obtained with the exact ones by a few practical examples.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jnm.3121</doi></addata></record>
fulltext fulltext
identifier ISSN: 0894-3370
ispartof International journal of numerical modelling, 2023-11, Vol.36 (6)
issn 0894-3370
1099-1204
language eng
recordid cdi_proquest_journals_2876145133
source Wiley-Blackwell Read & Publish Collection
subjects Basic converters
Polynomials
title Numerical solutions of 2D stochastic time‐fractional Sine–Gordon equation in the Caputo sense
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A40%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solutions%20of%202D%20stochastic%20time%E2%80%90fractional%20Sine%E2%80%93Gordon%20equation%20in%20the%20Caputo%20sense&rft.jtitle=International%20journal%20of%20numerical%20modelling&rft.au=Eidinejad,%20Zahra&rft.date=2023-11-01&rft.volume=36&rft.issue=6&rft.issn=0894-3370&rft.eissn=1099-1204&rft_id=info:doi/10.1002/jnm.3121&rft_dat=%3Cproquest%3E2876145133%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-1b68e50d80ac052a3f4b7171e662283efc1f3956fe05258348dd136db09908743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2876145133&rft_id=info:pmid/&rfr_iscdi=true