Loading…

Many-body entanglement and spectral clusters in the extended hard-core bosonic Hatano-Nelson model

We study many-body entanglements and spectra of the extended bosonic Hatano-Nelson model in the hard-core limit. We show that the system undergoes a phase transition from a gapless phase to a charge density wave phase accompanied by a \(\mathcal{PT}\) transition in the first excited state. The phase...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-04
Main Authors: Chao-Ze Lu, Sun, Gaoyong
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chao-Ze Lu
Sun, Gaoyong
description We study many-body entanglements and spectra of the extended bosonic Hatano-Nelson model in the hard-core limit. We show that the system undergoes a phase transition from a gapless phase to a charge density wave phase accompanied by a \(\mathcal{PT}\) transition in the first excited state. The phase transition is characterized by the crossing of the ground-state biorthogonal order parameter and the sudden change of the first excited-state entanglement entropy. The gapless phase is verified by the logarithmic scaling of the ground-state entanglement entropy with the central charge \(c=1\). Furthermore, we show that all energy spectral clusters would form ellipses in strong nearest-neighbor interactions, for which we establish a universal scaling law. The lengths of the major and minor axes are shown to obey power laws with respect to the nearest-neighbor interaction. The exact expressions are derived for the numbers of energy levels on the outermost elliptic ring of each clusters.
doi_str_mv 10.48550/arxiv.2310.07599
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2876187302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2876187302</sourcerecordid><originalsourceid>FETCH-LOGICAL-a959-f7da950071ab0af207d29ce12790f4d51ef205923c19e7308ee17f3c9f8856e3</originalsourceid><addsrcrecordid>eNotjU1LAzEYhIMgWGp_gLeA59R8bDbJUYpaoepB7yWbvLFbtklNdqX99wbsaWYemBmE7hhdNlpK-mDzqf9dclEBVdKYKzTjQjCiG85v0KKUPaWUt4pLKWaoe7PxTLrkzxjiaOP3AIdqsI0elyO4MdsBu2EqI-SC-4jHHWA4jRA9eLyz2ROXMuAulRR7h9e2jiTyDkPN-JA8DLfoOtihwOKic_T5_PS1WpPNx8vr6nFDrJGGBOWrUqqY7agNnCrPjQPGlaGh8ZJBZdJw4ZgBJagGYCoIZ4LWsgUxR_f_q8ecfiYo43afphzr4ZZr1TJdO1z8AcAEVu0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876187302</pqid></control><display><type>article</type><title>Many-body entanglement and spectral clusters in the extended hard-core bosonic Hatano-Nelson model</title><source>Publicly Available Content Database</source><creator>Chao-Ze Lu ; Sun, Gaoyong</creator><creatorcontrib>Chao-Ze Lu ; Sun, Gaoyong</creatorcontrib><description>We study many-body entanglements and spectra of the extended bosonic Hatano-Nelson model in the hard-core limit. We show that the system undergoes a phase transition from a gapless phase to a charge density wave phase accompanied by a \(\mathcal{PT}\) transition in the first excited state. The phase transition is characterized by the crossing of the ground-state biorthogonal order parameter and the sudden change of the first excited-state entanglement entropy. The gapless phase is verified by the logarithmic scaling of the ground-state entanglement entropy with the central charge \(c=1\). Furthermore, we show that all energy spectral clusters would form ellipses in strong nearest-neighbor interactions, for which we establish a universal scaling law. The lengths of the major and minor axes are shown to obey power laws with respect to the nearest-neighbor interaction. The exact expressions are derived for the numbers of energy levels on the outermost elliptic ring of each clusters.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2310.07599</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Clusters ; Energy levels ; Entropy ; Excitation ; Ground state ; Phase transitions ; Quantum entanglement ; Scaling laws</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2876187302?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Chao-Ze Lu</creatorcontrib><creatorcontrib>Sun, Gaoyong</creatorcontrib><title>Many-body entanglement and spectral clusters in the extended hard-core bosonic Hatano-Nelson model</title><title>arXiv.org</title><description>We study many-body entanglements and spectra of the extended bosonic Hatano-Nelson model in the hard-core limit. We show that the system undergoes a phase transition from a gapless phase to a charge density wave phase accompanied by a \(\mathcal{PT}\) transition in the first excited state. The phase transition is characterized by the crossing of the ground-state biorthogonal order parameter and the sudden change of the first excited-state entanglement entropy. The gapless phase is verified by the logarithmic scaling of the ground-state entanglement entropy with the central charge \(c=1\). Furthermore, we show that all energy spectral clusters would form ellipses in strong nearest-neighbor interactions, for which we establish a universal scaling law. The lengths of the major and minor axes are shown to obey power laws with respect to the nearest-neighbor interaction. The exact expressions are derived for the numbers of energy levels on the outermost elliptic ring of each clusters.</description><subject>Clusters</subject><subject>Energy levels</subject><subject>Entropy</subject><subject>Excitation</subject><subject>Ground state</subject><subject>Phase transitions</subject><subject>Quantum entanglement</subject><subject>Scaling laws</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1LAzEYhIMgWGp_gLeA59R8bDbJUYpaoepB7yWbvLFbtklNdqX99wbsaWYemBmE7hhdNlpK-mDzqf9dclEBVdKYKzTjQjCiG85v0KKUPaWUt4pLKWaoe7PxTLrkzxjiaOP3AIdqsI0elyO4MdsBu2EqI-SC-4jHHWA4jRA9eLyz2ROXMuAulRR7h9e2jiTyDkPN-JA8DLfoOtihwOKic_T5_PS1WpPNx8vr6nFDrJGGBOWrUqqY7agNnCrPjQPGlaGh8ZJBZdJw4ZgBJagGYCoIZ4LWsgUxR_f_q8ecfiYo43afphzr4ZZr1TJdO1z8AcAEVu0</recordid><startdate>20240412</startdate><enddate>20240412</enddate><creator>Chao-Ze Lu</creator><creator>Sun, Gaoyong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240412</creationdate><title>Many-body entanglement and spectral clusters in the extended hard-core bosonic Hatano-Nelson model</title><author>Chao-Ze Lu ; Sun, Gaoyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a959-f7da950071ab0af207d29ce12790f4d51ef205923c19e7308ee17f3c9f8856e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Clusters</topic><topic>Energy levels</topic><topic>Entropy</topic><topic>Excitation</topic><topic>Ground state</topic><topic>Phase transitions</topic><topic>Quantum entanglement</topic><topic>Scaling laws</topic><toplevel>online_resources</toplevel><creatorcontrib>Chao-Ze Lu</creatorcontrib><creatorcontrib>Sun, Gaoyong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chao-Ze Lu</au><au>Sun, Gaoyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Many-body entanglement and spectral clusters in the extended hard-core bosonic Hatano-Nelson model</atitle><jtitle>arXiv.org</jtitle><date>2024-04-12</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We study many-body entanglements and spectra of the extended bosonic Hatano-Nelson model in the hard-core limit. We show that the system undergoes a phase transition from a gapless phase to a charge density wave phase accompanied by a \(\mathcal{PT}\) transition in the first excited state. The phase transition is characterized by the crossing of the ground-state biorthogonal order parameter and the sudden change of the first excited-state entanglement entropy. The gapless phase is verified by the logarithmic scaling of the ground-state entanglement entropy with the central charge \(c=1\). Furthermore, we show that all energy spectral clusters would form ellipses in strong nearest-neighbor interactions, for which we establish a universal scaling law. The lengths of the major and minor axes are shown to obey power laws with respect to the nearest-neighbor interaction. The exact expressions are derived for the numbers of energy levels on the outermost elliptic ring of each clusters.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2310.07599</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2876187302
source Publicly Available Content Database
subjects Clusters
Energy levels
Entropy
Excitation
Ground state
Phase transitions
Quantum entanglement
Scaling laws
title Many-body entanglement and spectral clusters in the extended hard-core bosonic Hatano-Nelson model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A51%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Many-body%20entanglement%20and%20spectral%20clusters%20in%20the%20extended%20hard-core%20bosonic%20Hatano-Nelson%20model&rft.jtitle=arXiv.org&rft.au=Chao-Ze%20Lu&rft.date=2024-04-12&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2310.07599&rft_dat=%3Cproquest%3E2876187302%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a959-f7da950071ab0af207d29ce12790f4d51ef205923c19e7308ee17f3c9f8856e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2876187302&rft_id=info:pmid/&rfr_iscdi=true