Loading…
CSO Generator—A Parsimonious Wastewater Quality Model for Combined Sewer Overflows
Combined sewage overflows (CSOs) are a common consequence of heavy rainfall events and can have significant implications for water quality in receiving waterbodies. With climate change, these events are becoming more frequent and intense, placing greater pressure on aquatic ecosystems. To prevent wa...
Saved in:
Published in: | Water (Basel) 2023-10, Vol.15 (19), p.3424 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Combined sewage overflows (CSOs) are a common consequence of heavy rainfall events and can have significant implications for water quality in receiving waterbodies. With climate change, these events are becoming more frequent and intense, placing greater pressure on aquatic ecosystems. To prevent water pollution, it is essential to utilize numerical tools to investigate, forecast, and establish control measures for CSOs. Typically, these tools involve a dynamic model for flow simulation combined with either a detailed model for pollutants or a simplified event mean concentration (EMC) calculation. However, both approaches have drawbacks: a detailed model requires extensive calibration time, while the EMC does not account for system dynamics. To overcome these issues, a novel system was developed that integrates the dynamic nature of the detailed model with the rapid calibration of the EMC. This model employs two distinct concepts for pollution modeling: one for soluble compounds and one for suspended solids. The resulting model was evaluated at multiple locations with varying hydraulic dynamics, demonstrating its potential utility at any location where a dynamic model of the sewer system is available. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w15193424 |