Loading…
Performance of Alkali-Activated Slag Concrete Masonry Blocks Subjected to Accelerated Carbonation Curing
This study investigates the effect of accelerated carbonation curing on the carbon sequestration potential, performance, and microstructure of alkali-activated slag mixes representing concrete masonry blocks (CMBs). The carbonation curing process parameters varied, including initial curing duration,...
Saved in:
Published in: | Sustainability 2023-10, Vol.15 (19), p.14291 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study investigates the effect of accelerated carbonation curing on the carbon sequestration potential, performance, and microstructure of alkali-activated slag mixes representing concrete masonry blocks (CMBs). The carbonation curing process parameters varied, including initial curing duration, carbonation curing duration, and carbonation pressure. Research findings showed that a maximum CO2 uptake of 12.8%, by binder mass, was attained upon exposing concrete to 4 h initial curing and 20 h carbonation curing at a pressure of 5 bars. The compressive strength and water absorption capacity improved with longer initial and carbonation curing durations and higher pressure. Upon subjecting to salt attack, the mass and strength of 28-day concrete samples increased, owing to the formation of Friedel’s salt and Halite. All mixes could be used as non-load-bearing CMB, with a 1-day strength greater than 4.1 MPa. Based on the global warming potential index, the carbon footprint of carbonation-cured, alkali-activated slag concrete masonry units was up to 46% lower than non-carbonation-cured counterparts. Research findings offer valuable information on the production of carbonation-cured, cement-free concrete masonry blocks to replenish natural resources, recycle industrial waste, and mitigate CO2 emissions. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su151914291 |