Loading…
Characterizing the thermoelectric cooling performance across a broad temperature range
Thermoelectric cooling plays an essential role in precisely controlling the temperature of electronics. Characterizing the performance of thermoelectric coolers (TECs) is of great significance for the development of advanced solid-state cooling devices. However, the existing setup for characterizing...
Saved in:
Published in: | Review of scientific instruments 2023-10, Vol.94 (10) |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Thermoelectric cooling plays an essential role in precisely controlling the temperature of electronics. Characterizing the performance of thermoelectric coolers (TECs) is of great significance for the development of advanced solid-state cooling devices. However, the existing setup for characterizing the cooling performance of TECs has mainly been limited to the near room temperature range. Herein, we report the development of a new setup that is capable of characterizing thermoelectric cooling performance across a broad temperature range (80–350 K). With precise and steady control of the hot-side temperature, measurements of the coefficient of performance and maximum temperature difference at room temperature have been conducted on commercial devices. By comparing the results with the commercial datasheet, it shows that our setup can accurately evaluate the cooling performance of thermoelectric devices. In addition, we further extend the characterization to different hot-side temperatures, e.g., 173, 325, and 350 K, thus demonstrating the capability of our setup for evaluating the thermoelectric performance across a broad temperature range. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/5.0165551 |