Loading…

Generative Modeling with Phase Stochastic Bridges

Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs. DMs work by constructing a Stochastic Differential Equation (SDE) in the input space (ie, position space), and using a neural network to reverse it. In this work, we introduce a novel generative modeling frame...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-05
Main Authors: Chen, Tianrong, Gu, Jiatao, Dinh, Laurent, Theodorou, Evangelos A, Susskind, Joshua, Zhai, Shuangfei
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chen, Tianrong
Gu, Jiatao
Dinh, Laurent
Theodorou, Evangelos A
Susskind, Joshua
Zhai, Shuangfei
description Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs. DMs work by constructing a Stochastic Differential Equation (SDE) in the input space (ie, position space), and using a neural network to reverse it. In this work, we introduce a novel generative modeling framework grounded in \textbf{phase space dynamics}, where a phase space is defined as {an augmented space encompassing both position and velocity.} Leveraging insights from Stochastic Optimal Control, we construct a path measure in the phase space that enables efficient sampling. {In contrast to DMs, our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.} This early prediction sets the stage for efficient data generation by leveraging additional velocity information along the trajectory. On standard image generation benchmarks, our model yields favorable performance over baselines in the regime of small Number of Function Evaluations (NFEs). Furthermore, our approach rivals the performance of diffusion models equipped with efficient sampling techniques, underscoring its potential as a new tool generative modeling.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2876759489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2876759489</sourcerecordid><originalsourceid>FETCH-proquest_journals_28767594893</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdE_NSy1KLMksS1XwzU9JzcnMS1cozyzJUAjISCxOVQguyU8GMkoykxWcijJT0lOLeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjC3Mzc1NLEwtKYOFUAoWUzkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876759489</pqid></control><display><type>article</type><title>Generative Modeling with Phase Stochastic Bridges</title><source>ProQuest - Publicly Available Content Database</source><creator>Chen, Tianrong ; Gu, Jiatao ; Dinh, Laurent ; Theodorou, Evangelos A ; Susskind, Joshua ; Zhai, Shuangfei</creator><creatorcontrib>Chen, Tianrong ; Gu, Jiatao ; Dinh, Laurent ; Theodorou, Evangelos A ; Susskind, Joshua ; Zhai, Shuangfei</creatorcontrib><description>Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs. DMs work by constructing a Stochastic Differential Equation (SDE) in the input space (ie, position space), and using a neural network to reverse it. In this work, we introduce a novel generative modeling framework grounded in \textbf{phase space dynamics}, where a phase space is defined as {an augmented space encompassing both position and velocity.} Leveraging insights from Stochastic Optimal Control, we construct a path measure in the phase space that enables efficient sampling. {In contrast to DMs, our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.} This early prediction sets the stage for efficient data generation by leveraging additional velocity information along the trajectory. On standard image generation benchmarks, our model yields favorable performance over baselines in the regime of small Number of Function Evaluations (NFEs). Furthermore, our approach rivals the performance of diffusion models equipped with efficient sampling techniques, underscoring its potential as a new tool generative modeling.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data points ; Differential equations ; Image processing ; Modelling ; Neural networks ; Optimal control ; Sampling methods</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2876759489?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Chen, Tianrong</creatorcontrib><creatorcontrib>Gu, Jiatao</creatorcontrib><creatorcontrib>Dinh, Laurent</creatorcontrib><creatorcontrib>Theodorou, Evangelos A</creatorcontrib><creatorcontrib>Susskind, Joshua</creatorcontrib><creatorcontrib>Zhai, Shuangfei</creatorcontrib><title>Generative Modeling with Phase Stochastic Bridges</title><title>arXiv.org</title><description>Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs. DMs work by constructing a Stochastic Differential Equation (SDE) in the input space (ie, position space), and using a neural network to reverse it. In this work, we introduce a novel generative modeling framework grounded in \textbf{phase space dynamics}, where a phase space is defined as {an augmented space encompassing both position and velocity.} Leveraging insights from Stochastic Optimal Control, we construct a path measure in the phase space that enables efficient sampling. {In contrast to DMs, our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.} This early prediction sets the stage for efficient data generation by leveraging additional velocity information along the trajectory. On standard image generation benchmarks, our model yields favorable performance over baselines in the regime of small Number of Function Evaluations (NFEs). Furthermore, our approach rivals the performance of diffusion models equipped with efficient sampling techniques, underscoring its potential as a new tool generative modeling.</description><subject>Data points</subject><subject>Differential equations</subject><subject>Image processing</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Optimal control</subject><subject>Sampling methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdE_NSy1KLMksS1XwzU9JzcnMS1cozyzJUAjISCxOVQguyU8GMkoykxWcijJT0lOLeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjC3Mzc1NLEwtKYOFUAoWUzkw</recordid><startdate>20240512</startdate><enddate>20240512</enddate><creator>Chen, Tianrong</creator><creator>Gu, Jiatao</creator><creator>Dinh, Laurent</creator><creator>Theodorou, Evangelos A</creator><creator>Susskind, Joshua</creator><creator>Zhai, Shuangfei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240512</creationdate><title>Generative Modeling with Phase Stochastic Bridges</title><author>Chen, Tianrong ; Gu, Jiatao ; Dinh, Laurent ; Theodorou, Evangelos A ; Susskind, Joshua ; Zhai, Shuangfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28767594893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data points</topic><topic>Differential equations</topic><topic>Image processing</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Optimal control</topic><topic>Sampling methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Tianrong</creatorcontrib><creatorcontrib>Gu, Jiatao</creatorcontrib><creatorcontrib>Dinh, Laurent</creatorcontrib><creatorcontrib>Theodorou, Evangelos A</creatorcontrib><creatorcontrib>Susskind, Joshua</creatorcontrib><creatorcontrib>Zhai, Shuangfei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Tianrong</au><au>Gu, Jiatao</au><au>Dinh, Laurent</au><au>Theodorou, Evangelos A</au><au>Susskind, Joshua</au><au>Zhai, Shuangfei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Generative Modeling with Phase Stochastic Bridges</atitle><jtitle>arXiv.org</jtitle><date>2024-05-12</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs. DMs work by constructing a Stochastic Differential Equation (SDE) in the input space (ie, position space), and using a neural network to reverse it. In this work, we introduce a novel generative modeling framework grounded in \textbf{phase space dynamics}, where a phase space is defined as {an augmented space encompassing both position and velocity.} Leveraging insights from Stochastic Optimal Control, we construct a path measure in the phase space that enables efficient sampling. {In contrast to DMs, our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.} This early prediction sets the stage for efficient data generation by leveraging additional velocity information along the trajectory. On standard image generation benchmarks, our model yields favorable performance over baselines in the regime of small Number of Function Evaluations (NFEs). Furthermore, our approach rivals the performance of diffusion models equipped with efficient sampling techniques, underscoring its potential as a new tool generative modeling.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2876759489
source ProQuest - Publicly Available Content Database
subjects Data points
Differential equations
Image processing
Modelling
Neural networks
Optimal control
Sampling methods
title Generative Modeling with Phase Stochastic Bridges
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Generative%20Modeling%20with%20Phase%20Stochastic%20Bridges&rft.jtitle=arXiv.org&rft.au=Chen,%20Tianrong&rft.date=2024-05-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2876759489%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28767594893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2876759489&rft_id=info:pmid/&rfr_iscdi=true