Loading…
On linear preservers of permanental rank
Let \({\rm Mat}_n(\mathbb{F})\) denote the set of square \(n\times n\) matrices over a field \(\mathbb{F}\) of characteristic different from two. The permanental rank \({\rm prk}\,(A)\) of a matrix \(A \in{\rm Mat}_{n}(\mathbb{F})\) is the size of the maximal square submatrix in \(A\) with nonzero p...
Saved in:
Published in: | arXiv.org 2023-10 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Guterman, Alexander Spiridonov, Igor |
description | Let \({\rm Mat}_n(\mathbb{F})\) denote the set of square \(n\times n\) matrices over a field \(\mathbb{F}\) of characteristic different from two. The permanental rank \({\rm prk}\,(A)\) of a matrix \(A \in{\rm Mat}_{n}(\mathbb{F})\) is the size of the maximal square submatrix in \(A\) with nonzero permanent. By \(\Lambda^{k}\) and \(\Lambda^{\leq k}\) we denote the subsets of matrices \(A \in {\rm Mat}_{n}(\mathbb{F})\) with \({\rm prk}\,(A) = k\) and \({\rm prk}\,(A) \leq k\), respectively. In this paper for each \(1 \leq k \leq n-1\) we obtain a complete characterization of linear maps \(T: {\rm Mat}_{n}(\mathbb{F}) \to {\rm Mat}_{n}(\mathbb{F})\) satisfying \(T(\Lambda^{\leq k}) = \Lambda^{\leq k}\) or bijective linear maps satisfying \(T(\Lambda^{\leq k}) \subseteq \Lambda^{\leq k}\). Moreover, we show that if \(\mathbb{F}\) is an infinite field, then \(\Lambda^{k}\) is Zariski dense in \(\Lambda^{\leq k}\) and apply this to describe such bijective linear maps satisfying \(T(\Lambda^{k}) \subseteq \Lambda^{k}\). |
doi_str_mv | 10.48550/arxiv.2308.14526 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2876766310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2876766310</sourcerecordid><originalsourceid>FETCH-LOGICAL-a956-a234ac10a0c83b38b80bf378db9e8e09ad94430f50f3f650af3c6418fe9271353</originalsourceid><addsrcrecordid>eNotzctKAzEUgOEgCJbaB3AX6MbNjCc5uS6leINCN92XM9MTaJ1mxqQtPr6Crv7d9wvxoKA1wVp4ovJ9uLYaIbTKWO1uxEwjqiYYre_EotYjAGjntbU4E4-bLIdDZipyKly5XLlUOSY5cTlR5nymQRbKn_fiNtFQefHfudi-vmxX78168_axel43FK1rSKOhXgFBH7DD0AXoEvqw7yIHhkj7aAxCspAwOQuUsHdGhcRRe4UW52L5x05l_LpwPe-O46Xk3-NOB--8c6gAfwCPKUGX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876766310</pqid></control><display><type>article</type><title>On linear preservers of permanental rank</title><source>Publicly Available Content Database</source><creator>Guterman, Alexander ; Spiridonov, Igor</creator><creatorcontrib>Guterman, Alexander ; Spiridonov, Igor</creatorcontrib><description>Let \({\rm Mat}_n(\mathbb{F})\) denote the set of square \(n\times n\) matrices over a field \(\mathbb{F}\) of characteristic different from two. The permanental rank \({\rm prk}\,(A)\) of a matrix \(A \in{\rm Mat}_{n}(\mathbb{F})\) is the size of the maximal square submatrix in \(A\) with nonzero permanent. By \(\Lambda^{k}\) and \(\Lambda^{\leq k}\) we denote the subsets of matrices \(A \in {\rm Mat}_{n}(\mathbb{F})\) with \({\rm prk}\,(A) = k\) and \({\rm prk}\,(A) \leq k\), respectively. In this paper for each \(1 \leq k \leq n-1\) we obtain a complete characterization of linear maps \(T: {\rm Mat}_{n}(\mathbb{F}) \to {\rm Mat}_{n}(\mathbb{F})\) satisfying \(T(\Lambda^{\leq k}) = \Lambda^{\leq k}\) or bijective linear maps satisfying \(T(\Lambda^{\leq k}) \subseteq \Lambda^{\leq k}\). Moreover, we show that if \(\mathbb{F}\) is an infinite field, then \(\Lambda^{k}\) is Zariski dense in \(\Lambda^{\leq k}\) and apply this to describe such bijective linear maps satisfying \(T(\Lambda^{k}) \subseteq \Lambda^{k}\).</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2308.14526</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2876766310?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Guterman, Alexander</creatorcontrib><creatorcontrib>Spiridonov, Igor</creatorcontrib><title>On linear preservers of permanental rank</title><title>arXiv.org</title><description>Let \({\rm Mat}_n(\mathbb{F})\) denote the set of square \(n\times n\) matrices over a field \(\mathbb{F}\) of characteristic different from two. The permanental rank \({\rm prk}\,(A)\) of a matrix \(A \in{\rm Mat}_{n}(\mathbb{F})\) is the size of the maximal square submatrix in \(A\) with nonzero permanent. By \(\Lambda^{k}\) and \(\Lambda^{\leq k}\) we denote the subsets of matrices \(A \in {\rm Mat}_{n}(\mathbb{F})\) with \({\rm prk}\,(A) = k\) and \({\rm prk}\,(A) \leq k\), respectively. In this paper for each \(1 \leq k \leq n-1\) we obtain a complete characterization of linear maps \(T: {\rm Mat}_{n}(\mathbb{F}) \to {\rm Mat}_{n}(\mathbb{F})\) satisfying \(T(\Lambda^{\leq k}) = \Lambda^{\leq k}\) or bijective linear maps satisfying \(T(\Lambda^{\leq k}) \subseteq \Lambda^{\leq k}\). Moreover, we show that if \(\mathbb{F}\) is an infinite field, then \(\Lambda^{k}\) is Zariski dense in \(\Lambda^{\leq k}\) and apply this to describe such bijective linear maps satisfying \(T(\Lambda^{k}) \subseteq \Lambda^{k}\).</description><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzctKAzEUgOEgCJbaB3AX6MbNjCc5uS6leINCN92XM9MTaJ1mxqQtPr6Crv7d9wvxoKA1wVp4ovJ9uLYaIbTKWO1uxEwjqiYYre_EotYjAGjntbU4E4-bLIdDZipyKly5XLlUOSY5cTlR5nymQRbKn_fiNtFQefHfudi-vmxX78168_axel43FK1rSKOhXgFBH7DD0AXoEvqw7yIHhkj7aAxCspAwOQuUsHdGhcRRe4UW52L5x05l_LpwPe-O46Xk3-NOB--8c6gAfwCPKUGX</recordid><startdate>20231011</startdate><enddate>20231011</enddate><creator>Guterman, Alexander</creator><creator>Spiridonov, Igor</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231011</creationdate><title>On linear preservers of permanental rank</title><author>Guterman, Alexander ; Spiridonov, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a956-a234ac10a0c83b38b80bf378db9e8e09ad94430f50f3f650af3c6418fe9271353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Guterman, Alexander</creatorcontrib><creatorcontrib>Spiridonov, Igor</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guterman, Alexander</au><au>Spiridonov, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On linear preservers of permanental rank</atitle><jtitle>arXiv.org</jtitle><date>2023-10-11</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Let \({\rm Mat}_n(\mathbb{F})\) denote the set of square \(n\times n\) matrices over a field \(\mathbb{F}\) of characteristic different from two. The permanental rank \({\rm prk}\,(A)\) of a matrix \(A \in{\rm Mat}_{n}(\mathbb{F})\) is the size of the maximal square submatrix in \(A\) with nonzero permanent. By \(\Lambda^{k}\) and \(\Lambda^{\leq k}\) we denote the subsets of matrices \(A \in {\rm Mat}_{n}(\mathbb{F})\) with \({\rm prk}\,(A) = k\) and \({\rm prk}\,(A) \leq k\), respectively. In this paper for each \(1 \leq k \leq n-1\) we obtain a complete characterization of linear maps \(T: {\rm Mat}_{n}(\mathbb{F}) \to {\rm Mat}_{n}(\mathbb{F})\) satisfying \(T(\Lambda^{\leq k}) = \Lambda^{\leq k}\) or bijective linear maps satisfying \(T(\Lambda^{\leq k}) \subseteq \Lambda^{\leq k}\). Moreover, we show that if \(\mathbb{F}\) is an infinite field, then \(\Lambda^{k}\) is Zariski dense in \(\Lambda^{\leq k}\) and apply this to describe such bijective linear maps satisfying \(T(\Lambda^{k}) \subseteq \Lambda^{k}\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2308.14526</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2876766310 |
source | Publicly Available Content Database |
title | On linear preservers of permanental rank |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A19%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20linear%20preservers%20of%20permanental%20rank&rft.jtitle=arXiv.org&rft.au=Guterman,%20Alexander&rft.date=2023-10-11&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2308.14526&rft_dat=%3Cproquest%3E2876766310%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a956-a234ac10a0c83b38b80bf378db9e8e09ad94430f50f3f650af3c6418fe9271353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2876766310&rft_id=info:pmid/&rfr_iscdi=true |