Loading…
Effect of Surface Structure of Graphite on the Passivation Ability of Solid Electrolyte Interphases
Solid electrolyte interphase (SEI) layer that forms on the graphite negative electrodes of lithium-ion batteries (LIBs) has a crucial role in inhibiting the excess decomposition of electrolyte solutions. While this passivating ability is essential for improving the durability of LIBs, the relationsh...
Saved in:
Published in: | Denki kagaku oyobi kōgyō butsuri kagaku 2023/09/22, Vol.91(9), pp.097002-097002 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c589t-d49a4dbe840d0852ba6fd795c8ffd3dc679608209ee9d2159f2c201c89c0c7ac3 |
container_end_page | 097002 |
container_issue | 9 |
container_start_page | 097002 |
container_title | Denki kagaku oyobi kōgyō butsuri kagaku |
container_volume | 91 |
creator | MASUDA, Yoshiho INOO, Akane KONDO, Yasuyuki YOKOYAMA, Yuko MIYAHARA, Yuto MIYAZAKI, Kohei ABE, Takeshi |
description | Solid electrolyte interphase (SEI) layer that forms on the graphite negative electrodes of lithium-ion batteries (LIBs) has a crucial role in inhibiting the excess decomposition of electrolyte solutions. While this passivating ability is essential for improving the durability of LIBs, the relationship between the passivating ability and the surface structure of the graphite is not yet fully understood. In this study, we investigate the solvent co-intercalation behavior in the presence of SEI layers formed on various types of graphite surface structures. The amount of edge sites on each graphite sample is determined using electric double layer capacitance. The co-intercalation reactions of untreated, ethylene-carbonate-treated, and vinylene-carbonate-treated graphite samples in dimethoxyethane-based electrolyte solutions are compared. The co-intercalation reactions commence at approximately 1 V vs. Li/Li+ for all untreated samples, but the onset potentials are lowered by the presence of SEI layers, and the extent of this lowering depends on the sample. The SEI layer formed on the edge-rich surface effectively suppresses the co-intercalation reaction, and the additive is also more effective for the edge-rich sample. |
doi_str_mv | 10.5796/electrochemistry.23-00071 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2877105283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6e25fcd68a46425fad8edb92f806906e</doaj_id><sourcerecordid>2877105283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-d49a4dbe840d0852ba6fd795c8ffd3dc679608209ee9d2159f2c201c89c0c7ac3</originalsourceid><addsrcrecordid>eNplUcFuGyEQRVUq1UrzD1v1vAmwwMIxipzEkqVUSntGGIYs1sY4wFby3xd7Ex_Sy8wweu_NQw-hHwRf816JGxjBlhTtAK8hl3S4pl2LMe7JF7SgRIqWMk4u0IJ0jLUdZ_Qbusp5WyEEK6GoWiC79L6KNNE3z1PyxkLzXNJky5TguHxIZj-EUuddUwZofpmcw19TQn3fbsIYyuHEjWNwzXL2Mx4qfrUrkPaDyZC_o6_ejBmu3vsl-nO__H332K6fHlZ3t-vWcqlK65gyzG1AMuyw5HRjhHe94lZ67zpnRf0ylhQrAOUo4cpTSzGxUllse2O7S7SadV00W71P4dWkg44m6NMiphdtUgl2BC2Acm-dkIYJVkfjJLiNol5iobCAqvVz1tqn-DZBLnobp7Sr9jWVfU8wp7KrKDWjbIo5J_DnqwTrY0T6c0SadvoUUeU-zdxtLuYFzswPi_8xFdHqWD4Uzkg7mKRh1_0Dw_6okA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2877105283</pqid></control><display><type>article</type><title>Effect of Surface Structure of Graphite on the Passivation Ability of Solid Electrolyte Interphases</title><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) - Open Access English articles</source><creator>MASUDA, Yoshiho ; INOO, Akane ; KONDO, Yasuyuki ; YOKOYAMA, Yuko ; MIYAHARA, Yuto ; MIYAZAKI, Kohei ; ABE, Takeshi</creator><creatorcontrib>MASUDA, Yoshiho ; INOO, Akane ; KONDO, Yasuyuki ; YOKOYAMA, Yuko ; MIYAHARA, Yuto ; MIYAZAKI, Kohei ; ABE, Takeshi</creatorcontrib><description>Solid electrolyte interphase (SEI) layer that forms on the graphite negative electrodes of lithium-ion batteries (LIBs) has a crucial role in inhibiting the excess decomposition of electrolyte solutions. While this passivating ability is essential for improving the durability of LIBs, the relationship between the passivating ability and the surface structure of the graphite is not yet fully understood. In this study, we investigate the solvent co-intercalation behavior in the presence of SEI layers formed on various types of graphite surface structures. The amount of edge sites on each graphite sample is determined using electric double layer capacitance. The co-intercalation reactions of untreated, ethylene-carbonate-treated, and vinylene-carbonate-treated graphite samples in dimethoxyethane-based electrolyte solutions are compared. The co-intercalation reactions commence at approximately 1 V vs. Li/Li+ for all untreated samples, but the onset potentials are lowered by the presence of SEI layers, and the extent of this lowering depends on the sample. The SEI layer formed on the edge-rich surface effectively suppresses the co-intercalation reaction, and the additive is also more effective for the edge-rich sample.</description><identifier>ISSN: 1344-3542</identifier><identifier>EISSN: 2186-2451</identifier><identifier>DOI: 10.5796/electrochemistry.23-00071</identifier><language>eng</language><publisher>Tokyo: The Electrochemical Society of Japan</publisher><subject>Capacitance ; Durability ; Electric double layer ; Electrolytes ; Graphite ; Graphite Anode ; Intercalation ; Lithium ; Lithium-ion batteries ; Lithium-ion Battery ; Rechargeable batteries ; Solid Electrolyte Interphase ; Solid electrolytes ; Solvent Co-intercalation ; Surface structure</subject><ispartof>Electrochemistry, 2023/09/22, Vol.91(9), pp.097002-097002</ispartof><rights>The Author(s) 2023. Published by ECSJ.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c589t-d49a4dbe840d0852ba6fd795c8ffd3dc679608209ee9d2159f2c201c89c0c7ac3</cites><orcidid>0000-0002-3943-0978 ; 0000-0003-1103-3329 ; 0000-0003-4662-0996 ; 0000-0002-9990-1807 ; 0000-0001-5177-3570 ; 0000-0002-1515-8340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1882,27924,27925</link.rule.ids></links><search><creatorcontrib>MASUDA, Yoshiho</creatorcontrib><creatorcontrib>INOO, Akane</creatorcontrib><creatorcontrib>KONDO, Yasuyuki</creatorcontrib><creatorcontrib>YOKOYAMA, Yuko</creatorcontrib><creatorcontrib>MIYAHARA, Yuto</creatorcontrib><creatorcontrib>MIYAZAKI, Kohei</creatorcontrib><creatorcontrib>ABE, Takeshi</creatorcontrib><title>Effect of Surface Structure of Graphite on the Passivation Ability of Solid Electrolyte Interphases</title><title>Denki kagaku oyobi kōgyō butsuri kagaku</title><addtitle>Electrochemistry</addtitle><description>Solid electrolyte interphase (SEI) layer that forms on the graphite negative electrodes of lithium-ion batteries (LIBs) has a crucial role in inhibiting the excess decomposition of electrolyte solutions. While this passivating ability is essential for improving the durability of LIBs, the relationship between the passivating ability and the surface structure of the graphite is not yet fully understood. In this study, we investigate the solvent co-intercalation behavior in the presence of SEI layers formed on various types of graphite surface structures. The amount of edge sites on each graphite sample is determined using electric double layer capacitance. The co-intercalation reactions of untreated, ethylene-carbonate-treated, and vinylene-carbonate-treated graphite samples in dimethoxyethane-based electrolyte solutions are compared. The co-intercalation reactions commence at approximately 1 V vs. Li/Li+ for all untreated samples, but the onset potentials are lowered by the presence of SEI layers, and the extent of this lowering depends on the sample. The SEI layer formed on the edge-rich surface effectively suppresses the co-intercalation reaction, and the additive is also more effective for the edge-rich sample.</description><subject>Capacitance</subject><subject>Durability</subject><subject>Electric double layer</subject><subject>Electrolytes</subject><subject>Graphite</subject><subject>Graphite Anode</subject><subject>Intercalation</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion Battery</subject><subject>Rechargeable batteries</subject><subject>Solid Electrolyte Interphase</subject><subject>Solid electrolytes</subject><subject>Solvent Co-intercalation</subject><subject>Surface structure</subject><issn>1344-3542</issn><issn>2186-2451</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplUcFuGyEQRVUq1UrzD1v1vAmwwMIxipzEkqVUSntGGIYs1sY4wFby3xd7Ex_Sy8wweu_NQw-hHwRf816JGxjBlhTtAK8hl3S4pl2LMe7JF7SgRIqWMk4u0IJ0jLUdZ_Qbusp5WyEEK6GoWiC79L6KNNE3z1PyxkLzXNJky5TguHxIZj-EUuddUwZofpmcw19TQn3fbsIYyuHEjWNwzXL2Mx4qfrUrkPaDyZC_o6_ejBmu3vsl-nO__H332K6fHlZ3t-vWcqlK65gyzG1AMuyw5HRjhHe94lZ67zpnRf0ylhQrAOUo4cpTSzGxUllse2O7S7SadV00W71P4dWkg44m6NMiphdtUgl2BC2Acm-dkIYJVkfjJLiNol5iobCAqvVz1tqn-DZBLnobp7Sr9jWVfU8wp7KrKDWjbIo5J_DnqwTrY0T6c0SadvoUUeU-zdxtLuYFzswPi_8xFdHqWD4Uzkg7mKRh1_0Dw_6okA</recordid><startdate>20230922</startdate><enddate>20230922</enddate><creator>MASUDA, Yoshiho</creator><creator>INOO, Akane</creator><creator>KONDO, Yasuyuki</creator><creator>YOKOYAMA, Yuko</creator><creator>MIYAHARA, Yuto</creator><creator>MIYAZAKI, Kohei</creator><creator>ABE, Takeshi</creator><general>The Electrochemical Society of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3943-0978</orcidid><orcidid>https://orcid.org/0000-0003-1103-3329</orcidid><orcidid>https://orcid.org/0000-0003-4662-0996</orcidid><orcidid>https://orcid.org/0000-0002-9990-1807</orcidid><orcidid>https://orcid.org/0000-0001-5177-3570</orcidid><orcidid>https://orcid.org/0000-0002-1515-8340</orcidid></search><sort><creationdate>20230922</creationdate><title>Effect of Surface Structure of Graphite on the Passivation Ability of Solid Electrolyte Interphases</title><author>MASUDA, Yoshiho ; INOO, Akane ; KONDO, Yasuyuki ; YOKOYAMA, Yuko ; MIYAHARA, Yuto ; MIYAZAKI, Kohei ; ABE, Takeshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-d49a4dbe840d0852ba6fd795c8ffd3dc679608209ee9d2159f2c201c89c0c7ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Capacitance</topic><topic>Durability</topic><topic>Electric double layer</topic><topic>Electrolytes</topic><topic>Graphite</topic><topic>Graphite Anode</topic><topic>Intercalation</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion Battery</topic><topic>Rechargeable batteries</topic><topic>Solid Electrolyte Interphase</topic><topic>Solid electrolytes</topic><topic>Solvent Co-intercalation</topic><topic>Surface structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MASUDA, Yoshiho</creatorcontrib><creatorcontrib>INOO, Akane</creatorcontrib><creatorcontrib>KONDO, Yasuyuki</creatorcontrib><creatorcontrib>YOKOYAMA, Yuko</creatorcontrib><creatorcontrib>MIYAHARA, Yuto</creatorcontrib><creatorcontrib>MIYAZAKI, Kohei</creatorcontrib><creatorcontrib>ABE, Takeshi</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Denki kagaku oyobi kōgyō butsuri kagaku</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MASUDA, Yoshiho</au><au>INOO, Akane</au><au>KONDO, Yasuyuki</au><au>YOKOYAMA, Yuko</au><au>MIYAHARA, Yuto</au><au>MIYAZAKI, Kohei</au><au>ABE, Takeshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Surface Structure of Graphite on the Passivation Ability of Solid Electrolyte Interphases</atitle><jtitle>Denki kagaku oyobi kōgyō butsuri kagaku</jtitle><addtitle>Electrochemistry</addtitle><date>2023-09-22</date><risdate>2023</risdate><volume>91</volume><issue>9</issue><spage>097002</spage><epage>097002</epage><pages>097002-097002</pages><artnum>23-00071</artnum><issn>1344-3542</issn><eissn>2186-2451</eissn><abstract>Solid electrolyte interphase (SEI) layer that forms on the graphite negative electrodes of lithium-ion batteries (LIBs) has a crucial role in inhibiting the excess decomposition of electrolyte solutions. While this passivating ability is essential for improving the durability of LIBs, the relationship between the passivating ability and the surface structure of the graphite is not yet fully understood. In this study, we investigate the solvent co-intercalation behavior in the presence of SEI layers formed on various types of graphite surface structures. The amount of edge sites on each graphite sample is determined using electric double layer capacitance. The co-intercalation reactions of untreated, ethylene-carbonate-treated, and vinylene-carbonate-treated graphite samples in dimethoxyethane-based electrolyte solutions are compared. The co-intercalation reactions commence at approximately 1 V vs. Li/Li+ for all untreated samples, but the onset potentials are lowered by the presence of SEI layers, and the extent of this lowering depends on the sample. The SEI layer formed on the edge-rich surface effectively suppresses the co-intercalation reaction, and the additive is also more effective for the edge-rich sample.</abstract><cop>Tokyo</cop><pub>The Electrochemical Society of Japan</pub><doi>10.5796/electrochemistry.23-00071</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3943-0978</orcidid><orcidid>https://orcid.org/0000-0003-1103-3329</orcidid><orcidid>https://orcid.org/0000-0003-4662-0996</orcidid><orcidid>https://orcid.org/0000-0002-9990-1807</orcidid><orcidid>https://orcid.org/0000-0001-5177-3570</orcidid><orcidid>https://orcid.org/0000-0002-1515-8340</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1344-3542 |
ispartof | Electrochemistry, 2023/09/22, Vol.91(9), pp.097002-097002 |
issn | 1344-3542 2186-2451 |
language | eng |
recordid | cdi_proquest_journals_2877105283 |
source | J-STAGE (Japan Science & Technology Information Aggregator, Electronic) - Open Access English articles |
subjects | Capacitance Durability Electric double layer Electrolytes Graphite Graphite Anode Intercalation Lithium Lithium-ion batteries Lithium-ion Battery Rechargeable batteries Solid Electrolyte Interphase Solid electrolytes Solvent Co-intercalation Surface structure |
title | Effect of Surface Structure of Graphite on the Passivation Ability of Solid Electrolyte Interphases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Surface%20Structure%20of%20Graphite%20on%20the%20Passivation%20Ability%20of%20Solid%20Electrolyte%20Interphases&rft.jtitle=Denki%20kagaku%20oyobi%20k%C5%8Dgy%C5%8D%20butsuri%20kagaku&rft.au=MASUDA,%20Yoshiho&rft.date=2023-09-22&rft.volume=91&rft.issue=9&rft.spage=097002&rft.epage=097002&rft.pages=097002-097002&rft.artnum=23-00071&rft.issn=1344-3542&rft.eissn=2186-2451&rft_id=info:doi/10.5796/electrochemistry.23-00071&rft_dat=%3Cproquest_doaj_%3E2877105283%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c589t-d49a4dbe840d0852ba6fd795c8ffd3dc679608209ee9d2159f2c201c89c0c7ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2877105283&rft_id=info:pmid/&rfr_iscdi=true |