Loading…

Synthesis of novel magneto-hybrid polyoxometalate composite membrane with simultaneous photocatalytic self-cleaning and antifouling functionalities

Membrane technology is ideal for removing aqueous humic acid, but humic acid deposits cause membrane fouling, a significant challenge that limits its application. Herein, this work proposed an alternative approach to the controllably magnetically induced magneto-hybrid polyoxometalate (magneto-HPOM)...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers of chemical science and engineering 2023-10, Vol.17 (10), p.1450-1459
Main Authors: Tan, Nee Nee, Ng, Qi Hwa, Enche Ab Rahim, Siti Kartini, Ahmad, Abdul Latif, Hoo, Peng Yong, Chew, Thiam Leng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Membrane technology is ideal for removing aqueous humic acid, but humic acid deposits cause membrane fouling, a significant challenge that limits its application. Herein, this work proposed an alternative approach to the controllably magnetically induced magneto-hybrid polyoxometalate (magneto-HPOM) nanocomposite migration toward the polyethersulfone (PES) membrane surface under a magnetic field to enhance the self-cleaning and antifouling functionalities of the membrane. Before incorporating magneto-HPOM nanocomposite into the PES casting solution, functionalized magnetite nanoparticles (F-MNP) were first coated with HPOM photocatalyst to fabricate a magneto-HPOM-PES membrane. It was shown that the apparent impacts of this novel magneto-HPOM-PES membrane on the hydrophilic behavior and photocatalytic properties of the magneto-HPOM nanocomposite improve the hydrophilicity, separation performance, antifouling and self-cleaning properties of the membrane compared with neat PES membrane. Furthermore, after exposure to ultraviolet light, the magneto-HPOM-PES membrane can be recovered after three cycles with a flux recovery ratio of 107.95%, 100.06%, and 95.56%, which is attributed to the temporal super hydrophilicity effect. Meanwhile, the magneto-HPOM-PES membrane could efficiently maintain 100% humic acid rejection for the first and second cycles and 99.81% for the third cycle. This study revealed a novel approach to fabricating membranes with high antifouling and self-cleaning properties for water treatment.
ISSN:2095-0179
2095-0187
DOI:10.1007/s11705-023-2310-3