Loading…

Evaluation of TENORM radionuclides and trace element levels by using seagrass

The effects of technologically enhanced naturally occurring radioactive material (TENORM) on coastal zones were ecologically evaluated using Posidonia oceanica . Radionuclides and trace element levels were investigated in Posidonia oceanica to evaluate if seagrasses can be assessed as a biomarker fo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of coastal conservation 2023-12, Vol.27 (6), p.56, Article 56
Main Authors: Akakçe, Nurdan, Görgün, Aysun Uğur, Kizilkaya, İnci Tüney, Camgöz, Berkay, Atay, Nevra Öztürk, Sert, İlker
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-46f5fcf3e4ae6815c40ec6fac0e672f37322100a71ae3749ca8615f246f0d2303
container_end_page
container_issue 6
container_start_page 56
container_title Journal of coastal conservation
container_volume 27
creator Akakçe, Nurdan
Görgün, Aysun Uğur
Kizilkaya, İnci Tüney
Camgöz, Berkay
Atay, Nevra Öztürk
Sert, İlker
description The effects of technologically enhanced naturally occurring radioactive material (TENORM) on coastal zones were ecologically evaluated using Posidonia oceanica . Radionuclides and trace element levels were investigated in Posidonia oceanica to evaluate if seagrasses can be assessed as a biomarker for biomonitoring surveys. The radionuclide concentrations were determined using radiometric methods. Furthermore, trace element levels were obtained using energy-dispersive X-ray fluorescence spectrometry. The mean activity concentrations of 210 Po and 40 K were found to be 375.5 and 1.6 Bq/kg, respectively. The mean levels of trace elements of Al, Fe, Mn, Ni, Zn, Pb and Cr were 1620, 183, 15.3, 7.9, 7.1, 2.8 and 67 ppm, respectively. The absorbed dose rates (D) of 210 Po and 40 K were calculated, with the average levels being 1.2 × 10 − 3 and 4.4 × 10 − 3 µGy/h, respectively. In marine ecology, P. oceanica can be a biomarker for detecting trace metals ( 40 K and 210 Po) and absorbed dose rates. The concentrations and sources of TENORM were evaluated in terms of ecological and industrial hazards to the marine environment.
doi_str_mv 10.1007/s11852-023-00988-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2878161582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878161582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-46f5fcf3e4ae6815c40ec6fac0e672f37322100a71ae3749ca8615f246f0d2303</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS7G7So5T6Aa0FqecQs5Nly3a3JruF_ntTV_DmaYbheWeYh5BbDvccQD1EznUuGAjJAGZaM3FGJlyrjCmd8fPUZwAMZA6X5CrGLYDIdS4nZLU42Gawfd21tPN0s3hbv69osGUaDK6pS4zUtiXtg3VIscEdtj1t8IBNpJ9HOsS6rWhEWwUb4zW58LaJePNbp-TjabGZv7Dl-vl1_rhkTijoWVb43DsvMbNYaJ67DNAV3jrAQgkvlRQivWUVtyhVNnNWFzz3IuWgFBLklNyNe_eh-xow9mbbDaFNJ43QSvNEa5EoMVIudDEG9GYf6p0NR8PBnLSZUZtJ2syPNnMKyTEUE9xWGP5W_5P6Bt6jbyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878161582</pqid></control><display><type>article</type><title>Evaluation of TENORM radionuclides and trace element levels by using seagrass</title><source>Springer Nature</source><creator>Akakçe, Nurdan ; Görgün, Aysun Uğur ; Kizilkaya, İnci Tüney ; Camgöz, Berkay ; Atay, Nevra Öztürk ; Sert, İlker</creator><creatorcontrib>Akakçe, Nurdan ; Görgün, Aysun Uğur ; Kizilkaya, İnci Tüney ; Camgöz, Berkay ; Atay, Nevra Öztürk ; Sert, İlker</creatorcontrib><description>The effects of technologically enhanced naturally occurring radioactive material (TENORM) on coastal zones were ecologically evaluated using Posidonia oceanica . Radionuclides and trace element levels were investigated in Posidonia oceanica to evaluate if seagrasses can be assessed as a biomarker for biomonitoring surveys. The radionuclide concentrations were determined using radiometric methods. Furthermore, trace element levels were obtained using energy-dispersive X-ray fluorescence spectrometry. The mean activity concentrations of 210 Po and 40 K were found to be 375.5 and 1.6 Bq/kg, respectively. The mean levels of trace elements of Al, Fe, Mn, Ni, Zn, Pb and Cr were 1620, 183, 15.3, 7.9, 7.1, 2.8 and 67 ppm, respectively. The absorbed dose rates (D) of 210 Po and 40 K were calculated, with the average levels being 1.2 × 10 − 3 and 4.4 × 10 − 3 µGy/h, respectively. In marine ecology, P. oceanica can be a biomarker for detecting trace metals ( 40 K and 210 Po) and absorbed dose rates. The concentrations and sources of TENORM were evaluated in terms of ecological and industrial hazards to the marine environment.</description><identifier>ISSN: 1400-0350</identifier><identifier>EISSN: 1874-7841</identifier><identifier>DOI: 10.1007/s11852-023-00988-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biomarkers ; Biomonitoring ; Chromium ; Coastal ecology ; Coastal Sciences ; Coastal zone ; Coastal zones ; Earth and Environmental Science ; Fluorescence ; Geography ; Iron ; Manganese ; Marine ecology ; Marine environment ; Nature Conservation ; Oceanography ; Polonium ; Posidonia oceanica ; Radioactive materials ; Radioisotopes ; Radionuclide kinetics ; Remote Sensing/Photogrammetry ; Sea grasses ; Seagrasses ; Spectrometry ; Trace elements ; Trace metals ; X-ray fluorescence ; Zinc</subject><ispartof>Journal of coastal conservation, 2023-12, Vol.27 (6), p.56, Article 56</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-46f5fcf3e4ae6815c40ec6fac0e672f37322100a71ae3749ca8615f246f0d2303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Akakçe, Nurdan</creatorcontrib><creatorcontrib>Görgün, Aysun Uğur</creatorcontrib><creatorcontrib>Kizilkaya, İnci Tüney</creatorcontrib><creatorcontrib>Camgöz, Berkay</creatorcontrib><creatorcontrib>Atay, Nevra Öztürk</creatorcontrib><creatorcontrib>Sert, İlker</creatorcontrib><title>Evaluation of TENORM radionuclides and trace element levels by using seagrass</title><title>Journal of coastal conservation</title><addtitle>J Coast Conserv</addtitle><description>The effects of technologically enhanced naturally occurring radioactive material (TENORM) on coastal zones were ecologically evaluated using Posidonia oceanica . Radionuclides and trace element levels were investigated in Posidonia oceanica to evaluate if seagrasses can be assessed as a biomarker for biomonitoring surveys. The radionuclide concentrations were determined using radiometric methods. Furthermore, trace element levels were obtained using energy-dispersive X-ray fluorescence spectrometry. The mean activity concentrations of 210 Po and 40 K were found to be 375.5 and 1.6 Bq/kg, respectively. The mean levels of trace elements of Al, Fe, Mn, Ni, Zn, Pb and Cr were 1620, 183, 15.3, 7.9, 7.1, 2.8 and 67 ppm, respectively. The absorbed dose rates (D) of 210 Po and 40 K were calculated, with the average levels being 1.2 × 10 − 3 and 4.4 × 10 − 3 µGy/h, respectively. In marine ecology, P. oceanica can be a biomarker for detecting trace metals ( 40 K and 210 Po) and absorbed dose rates. The concentrations and sources of TENORM were evaluated in terms of ecological and industrial hazards to the marine environment.</description><subject>Biomarkers</subject><subject>Biomonitoring</subject><subject>Chromium</subject><subject>Coastal ecology</subject><subject>Coastal Sciences</subject><subject>Coastal zone</subject><subject>Coastal zones</subject><subject>Earth and Environmental Science</subject><subject>Fluorescence</subject><subject>Geography</subject><subject>Iron</subject><subject>Manganese</subject><subject>Marine ecology</subject><subject>Marine environment</subject><subject>Nature Conservation</subject><subject>Oceanography</subject><subject>Polonium</subject><subject>Posidonia oceanica</subject><subject>Radioactive materials</subject><subject>Radioisotopes</subject><subject>Radionuclide kinetics</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Sea grasses</subject><subject>Seagrasses</subject><subject>Spectrometry</subject><subject>Trace elements</subject><subject>Trace metals</subject><subject>X-ray fluorescence</subject><subject>Zinc</subject><issn>1400-0350</issn><issn>1874-7841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS7G7So5T6Aa0FqecQs5Nly3a3JruF_ntTV_DmaYbheWeYh5BbDvccQD1EznUuGAjJAGZaM3FGJlyrjCmd8fPUZwAMZA6X5CrGLYDIdS4nZLU42Gawfd21tPN0s3hbv69osGUaDK6pS4zUtiXtg3VIscEdtj1t8IBNpJ9HOsS6rWhEWwUb4zW58LaJePNbp-TjabGZv7Dl-vl1_rhkTijoWVb43DsvMbNYaJ67DNAV3jrAQgkvlRQivWUVtyhVNnNWFzz3IuWgFBLklNyNe_eh-xow9mbbDaFNJ43QSvNEa5EoMVIudDEG9GYf6p0NR8PBnLSZUZtJ2syPNnMKyTEUE9xWGP5W_5P6Bt6jbyw</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Akakçe, Nurdan</creator><creator>Görgün, Aysun Uğur</creator><creator>Kizilkaya, İnci Tüney</creator><creator>Camgöz, Berkay</creator><creator>Atay, Nevra Öztürk</creator><creator>Sert, İlker</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7TN</scope><scope>7U6</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20231201</creationdate><title>Evaluation of TENORM radionuclides and trace element levels by using seagrass</title><author>Akakçe, Nurdan ; Görgün, Aysun Uğur ; Kizilkaya, İnci Tüney ; Camgöz, Berkay ; Atay, Nevra Öztürk ; Sert, İlker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-46f5fcf3e4ae6815c40ec6fac0e672f37322100a71ae3749ca8615f246f0d2303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomarkers</topic><topic>Biomonitoring</topic><topic>Chromium</topic><topic>Coastal ecology</topic><topic>Coastal Sciences</topic><topic>Coastal zone</topic><topic>Coastal zones</topic><topic>Earth and Environmental Science</topic><topic>Fluorescence</topic><topic>Geography</topic><topic>Iron</topic><topic>Manganese</topic><topic>Marine ecology</topic><topic>Marine environment</topic><topic>Nature Conservation</topic><topic>Oceanography</topic><topic>Polonium</topic><topic>Posidonia oceanica</topic><topic>Radioactive materials</topic><topic>Radioisotopes</topic><topic>Radionuclide kinetics</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Sea grasses</topic><topic>Seagrasses</topic><topic>Spectrometry</topic><topic>Trace elements</topic><topic>Trace metals</topic><topic>X-ray fluorescence</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akakçe, Nurdan</creatorcontrib><creatorcontrib>Görgün, Aysun Uğur</creatorcontrib><creatorcontrib>Kizilkaya, İnci Tüney</creatorcontrib><creatorcontrib>Camgöz, Berkay</creatorcontrib><creatorcontrib>Atay, Nevra Öztürk</creatorcontrib><creatorcontrib>Sert, İlker</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of coastal conservation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akakçe, Nurdan</au><au>Görgün, Aysun Uğur</au><au>Kizilkaya, İnci Tüney</au><au>Camgöz, Berkay</au><au>Atay, Nevra Öztürk</au><au>Sert, İlker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of TENORM radionuclides and trace element levels by using seagrass</atitle><jtitle>Journal of coastal conservation</jtitle><stitle>J Coast Conserv</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>27</volume><issue>6</issue><spage>56</spage><pages>56-</pages><artnum>56</artnum><issn>1400-0350</issn><eissn>1874-7841</eissn><abstract>The effects of technologically enhanced naturally occurring radioactive material (TENORM) on coastal zones were ecologically evaluated using Posidonia oceanica . Radionuclides and trace element levels were investigated in Posidonia oceanica to evaluate if seagrasses can be assessed as a biomarker for biomonitoring surveys. The radionuclide concentrations were determined using radiometric methods. Furthermore, trace element levels were obtained using energy-dispersive X-ray fluorescence spectrometry. The mean activity concentrations of 210 Po and 40 K were found to be 375.5 and 1.6 Bq/kg, respectively. The mean levels of trace elements of Al, Fe, Mn, Ni, Zn, Pb and Cr were 1620, 183, 15.3, 7.9, 7.1, 2.8 and 67 ppm, respectively. The absorbed dose rates (D) of 210 Po and 40 K were calculated, with the average levels being 1.2 × 10 − 3 and 4.4 × 10 − 3 µGy/h, respectively. In marine ecology, P. oceanica can be a biomarker for detecting trace metals ( 40 K and 210 Po) and absorbed dose rates. The concentrations and sources of TENORM were evaluated in terms of ecological and industrial hazards to the marine environment.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11852-023-00988-2</doi></addata></record>
fulltext fulltext
identifier ISSN: 1400-0350
ispartof Journal of coastal conservation, 2023-12, Vol.27 (6), p.56, Article 56
issn 1400-0350
1874-7841
language eng
recordid cdi_proquest_journals_2878161582
source Springer Nature
subjects Biomarkers
Biomonitoring
Chromium
Coastal ecology
Coastal Sciences
Coastal zone
Coastal zones
Earth and Environmental Science
Fluorescence
Geography
Iron
Manganese
Marine ecology
Marine environment
Nature Conservation
Oceanography
Polonium
Posidonia oceanica
Radioactive materials
Radioisotopes
Radionuclide kinetics
Remote Sensing/Photogrammetry
Sea grasses
Seagrasses
Spectrometry
Trace elements
Trace metals
X-ray fluorescence
Zinc
title Evaluation of TENORM radionuclides and trace element levels by using seagrass
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20TENORM%20radionuclides%20and%20trace%20element%20levels%20by%20using%20seagrass&rft.jtitle=Journal%20of%20coastal%20conservation&rft.au=Akak%C3%A7e,%20Nurdan&rft.date=2023-12-01&rft.volume=27&rft.issue=6&rft.spage=56&rft.pages=56-&rft.artnum=56&rft.issn=1400-0350&rft.eissn=1874-7841&rft_id=info:doi/10.1007/s11852-023-00988-2&rft_dat=%3Cproquest_cross%3E2878161582%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-46f5fcf3e4ae6815c40ec6fac0e672f37322100a71ae3749ca8615f246f0d2303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2878161582&rft_id=info:pmid/&rfr_iscdi=true