Loading…

Magnesium Gradient‐Based Hierarchical Scaffold for Dual‐Lineage Regeneration of Osteochondral Defect

Osteochondral regeneration remains a great challenge due to the limited self‐healing ability and the complexity of its hierarchical structure and composition. Mg 2+ and hypoxia are two effective modulators in boosting chondrogenesis. To this end, a double‐layered scaffold (D) consisting of a hydroge...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2023-10, Vol.33 (43)
Main Authors: Gao, Chenyuan, Dai, Wenli, Wang, Xinyu, Zhang, Liwen, Wang, Yue, Huang, Yiqian, Yuan, Zuoying, Zhang, Xin, Yu, Yingjie, Yang, Xiaoping, Cai, Qing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c267t-bccef0c4f161089b179d728cccf0e230346be29533494c40308adcdde6916fb33
cites cdi_FETCH-LOGICAL-c267t-bccef0c4f161089b179d728cccf0e230346be29533494c40308adcdde6916fb33
container_end_page
container_issue 43
container_start_page
container_title Advanced functional materials
container_volume 33
creator Gao, Chenyuan
Dai, Wenli
Wang, Xinyu
Zhang, Liwen
Wang, Yue
Huang, Yiqian
Yuan, Zuoying
Zhang, Xin
Yu, Yingjie
Yang, Xiaoping
Cai, Qing
description Osteochondral regeneration remains a great challenge due to the limited self‐healing ability and the complexity of its hierarchical structure and composition. Mg 2+ and hypoxia are two effective modulators in boosting chondrogenesis. To this end, a double‐layered scaffold (D) consisting of a hydrogel layer on a porous cryogel is fabricated to mimic the hierarchical structure of osteochondral tissue. An Mg 2+ gradient is incorporated into the double‐layered scaffold with hypoxia‐mimicking deferoxamine (DFO) embedded in the hydrogel (D‐Mg‐DFO), which remarkably augments the dual‐lineage regeneration of both cartilage and subchondral bone. The higher Mg 2+ supplementation from the upper hydrogel, associated with its hypoxia‐mimicking situation and small pore size, exhibits promotive effects on chondrogenic differentiation. The lower Mg 2+ supplementation from the bottom cryogel, associated with its interconnected macroporous structure, achieves multiple contributions in stem cell migration from bone marrow cavity, matrix mineralization, and osteogenesis. Furthermore, rabbits’ trochlea osteochondral defects are established to evaluate the regenerative outcome. Compared to control scaffolds containing only Mg 2+ or DFO, the D‐Mg‐DFO scaffold presents the best regenerative effect under the synergistic contribution of multiple factors. Overall, this work provides a new design of scaffold toward an effective repair of cartilage defect.
doi_str_mv 10.1002/adfm.202304829
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2878220844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878220844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-bccef0c4f161089b179d728cccf0e230346be29533494c40308adcdde6916fb33</originalsourceid><addsrcrecordid>eNo9kLtOwzAUhi0EEqWwMltiTjm-kDgjtLRFKqrERWKLHPu4TZXGxU4GNh6BZ-RJSFXU6Zzh-8_lI-SawYgB8Ftt3XbEgQuQiucnZMBSliYCuDo99uzjnFzEuAFgWSbkgKyf9arBWHVbOgvaVti0v98_DzqipfMKgw5mXRld01ejnfO1pc4HOul03WOLqkG9QvqCK2x6tq18Q72jy9iiN2vf2NAnJ-jQtJfkzOk64tV_HZL36ePbeJ4slrOn8f0iMTzN2qQ0Bh0Y6fqDQeUly3KbcWWMcYD9a0KmJfL8TgiZSyNBgNLWWItpzlJXCjEkN4e5u-A_O4xtsfFdaPqVBVeZ4hyUlD01OlAm-BgDumIXqq0OXwWDYm-z2NssjjbFH93RawA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878220844</pqid></control><display><type>article</type><title>Magnesium Gradient‐Based Hierarchical Scaffold for Dual‐Lineage Regeneration of Osteochondral Defect</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Gao, Chenyuan ; Dai, Wenli ; Wang, Xinyu ; Zhang, Liwen ; Wang, Yue ; Huang, Yiqian ; Yuan, Zuoying ; Zhang, Xin ; Yu, Yingjie ; Yang, Xiaoping ; Cai, Qing</creator><creatorcontrib>Gao, Chenyuan ; Dai, Wenli ; Wang, Xinyu ; Zhang, Liwen ; Wang, Yue ; Huang, Yiqian ; Yuan, Zuoying ; Zhang, Xin ; Yu, Yingjie ; Yang, Xiaoping ; Cai, Qing</creatorcontrib><description>Osteochondral regeneration remains a great challenge due to the limited self‐healing ability and the complexity of its hierarchical structure and composition. Mg 2+ and hypoxia are two effective modulators in boosting chondrogenesis. To this end, a double‐layered scaffold (D) consisting of a hydrogel layer on a porous cryogel is fabricated to mimic the hierarchical structure of osteochondral tissue. An Mg 2+ gradient is incorporated into the double‐layered scaffold with hypoxia‐mimicking deferoxamine (DFO) embedded in the hydrogel (D‐Mg‐DFO), which remarkably augments the dual‐lineage regeneration of both cartilage and subchondral bone. The higher Mg 2+ supplementation from the upper hydrogel, associated with its hypoxia‐mimicking situation and small pore size, exhibits promotive effects on chondrogenic differentiation. The lower Mg 2+ supplementation from the bottom cryogel, associated with its interconnected macroporous structure, achieves multiple contributions in stem cell migration from bone marrow cavity, matrix mineralization, and osteogenesis. Furthermore, rabbits’ trochlea osteochondral defects are established to evaluate the regenerative outcome. Compared to control scaffolds containing only Mg 2+ or DFO, the D‐Mg‐DFO scaffold presents the best regenerative effect under the synergistic contribution of multiple factors. Overall, this work provides a new design of scaffold toward an effective repair of cartilage defect.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202304829</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Bone marrow ; Cartilage ; Design defects ; Hydrogels ; Hypoxia ; Magnesium ; Materials science ; Modulators ; Pore size ; Regeneration ; Scaffolds ; Stem cells</subject><ispartof>Advanced functional materials, 2023-10, Vol.33 (43)</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-bccef0c4f161089b179d728cccf0e230346be29533494c40308adcdde6916fb33</citedby><cites>FETCH-LOGICAL-c267t-bccef0c4f161089b179d728cccf0e230346be29533494c40308adcdde6916fb33</cites><orcidid>0000-0001-6618-0321 ; 0000-0002-2543-9808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gao, Chenyuan</creatorcontrib><creatorcontrib>Dai, Wenli</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Zhang, Liwen</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Huang, Yiqian</creatorcontrib><creatorcontrib>Yuan, Zuoying</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Yu, Yingjie</creatorcontrib><creatorcontrib>Yang, Xiaoping</creatorcontrib><creatorcontrib>Cai, Qing</creatorcontrib><title>Magnesium Gradient‐Based Hierarchical Scaffold for Dual‐Lineage Regeneration of Osteochondral Defect</title><title>Advanced functional materials</title><description>Osteochondral regeneration remains a great challenge due to the limited self‐healing ability and the complexity of its hierarchical structure and composition. Mg 2+ and hypoxia are two effective modulators in boosting chondrogenesis. To this end, a double‐layered scaffold (D) consisting of a hydrogel layer on a porous cryogel is fabricated to mimic the hierarchical structure of osteochondral tissue. An Mg 2+ gradient is incorporated into the double‐layered scaffold with hypoxia‐mimicking deferoxamine (DFO) embedded in the hydrogel (D‐Mg‐DFO), which remarkably augments the dual‐lineage regeneration of both cartilage and subchondral bone. The higher Mg 2+ supplementation from the upper hydrogel, associated with its hypoxia‐mimicking situation and small pore size, exhibits promotive effects on chondrogenic differentiation. The lower Mg 2+ supplementation from the bottom cryogel, associated with its interconnected macroporous structure, achieves multiple contributions in stem cell migration from bone marrow cavity, matrix mineralization, and osteogenesis. Furthermore, rabbits’ trochlea osteochondral defects are established to evaluate the regenerative outcome. Compared to control scaffolds containing only Mg 2+ or DFO, the D‐Mg‐DFO scaffold presents the best regenerative effect under the synergistic contribution of multiple factors. Overall, this work provides a new design of scaffold toward an effective repair of cartilage defect.</description><subject>Bone marrow</subject><subject>Cartilage</subject><subject>Design defects</subject><subject>Hydrogels</subject><subject>Hypoxia</subject><subject>Magnesium</subject><subject>Materials science</subject><subject>Modulators</subject><subject>Pore size</subject><subject>Regeneration</subject><subject>Scaffolds</subject><subject>Stem cells</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kLtOwzAUhi0EEqWwMltiTjm-kDgjtLRFKqrERWKLHPu4TZXGxU4GNh6BZ-RJSFXU6Zzh-8_lI-SawYgB8Ftt3XbEgQuQiucnZMBSliYCuDo99uzjnFzEuAFgWSbkgKyf9arBWHVbOgvaVti0v98_DzqipfMKgw5mXRld01ejnfO1pc4HOul03WOLqkG9QvqCK2x6tq18Q72jy9iiN2vf2NAnJ-jQtJfkzOk64tV_HZL36ePbeJ4slrOn8f0iMTzN2qQ0Bh0Y6fqDQeUly3KbcWWMcYD9a0KmJfL8TgiZSyNBgNLWWItpzlJXCjEkN4e5u-A_O4xtsfFdaPqVBVeZ4hyUlD01OlAm-BgDumIXqq0OXwWDYm-z2NssjjbFH93RawA</recordid><startdate>20231018</startdate><enddate>20231018</enddate><creator>Gao, Chenyuan</creator><creator>Dai, Wenli</creator><creator>Wang, Xinyu</creator><creator>Zhang, Liwen</creator><creator>Wang, Yue</creator><creator>Huang, Yiqian</creator><creator>Yuan, Zuoying</creator><creator>Zhang, Xin</creator><creator>Yu, Yingjie</creator><creator>Yang, Xiaoping</creator><creator>Cai, Qing</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6618-0321</orcidid><orcidid>https://orcid.org/0000-0002-2543-9808</orcidid></search><sort><creationdate>20231018</creationdate><title>Magnesium Gradient‐Based Hierarchical Scaffold for Dual‐Lineage Regeneration of Osteochondral Defect</title><author>Gao, Chenyuan ; Dai, Wenli ; Wang, Xinyu ; Zhang, Liwen ; Wang, Yue ; Huang, Yiqian ; Yuan, Zuoying ; Zhang, Xin ; Yu, Yingjie ; Yang, Xiaoping ; Cai, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-bccef0c4f161089b179d728cccf0e230346be29533494c40308adcdde6916fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bone marrow</topic><topic>Cartilage</topic><topic>Design defects</topic><topic>Hydrogels</topic><topic>Hypoxia</topic><topic>Magnesium</topic><topic>Materials science</topic><topic>Modulators</topic><topic>Pore size</topic><topic>Regeneration</topic><topic>Scaffolds</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Chenyuan</creatorcontrib><creatorcontrib>Dai, Wenli</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Zhang, Liwen</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Huang, Yiqian</creatorcontrib><creatorcontrib>Yuan, Zuoying</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Yu, Yingjie</creatorcontrib><creatorcontrib>Yang, Xiaoping</creatorcontrib><creatorcontrib>Cai, Qing</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Chenyuan</au><au>Dai, Wenli</au><au>Wang, Xinyu</au><au>Zhang, Liwen</au><au>Wang, Yue</au><au>Huang, Yiqian</au><au>Yuan, Zuoying</au><au>Zhang, Xin</au><au>Yu, Yingjie</au><au>Yang, Xiaoping</au><au>Cai, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnesium Gradient‐Based Hierarchical Scaffold for Dual‐Lineage Regeneration of Osteochondral Defect</atitle><jtitle>Advanced functional materials</jtitle><date>2023-10-18</date><risdate>2023</risdate><volume>33</volume><issue>43</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Osteochondral regeneration remains a great challenge due to the limited self‐healing ability and the complexity of its hierarchical structure and composition. Mg 2+ and hypoxia are two effective modulators in boosting chondrogenesis. To this end, a double‐layered scaffold (D) consisting of a hydrogel layer on a porous cryogel is fabricated to mimic the hierarchical structure of osteochondral tissue. An Mg 2+ gradient is incorporated into the double‐layered scaffold with hypoxia‐mimicking deferoxamine (DFO) embedded in the hydrogel (D‐Mg‐DFO), which remarkably augments the dual‐lineage regeneration of both cartilage and subchondral bone. The higher Mg 2+ supplementation from the upper hydrogel, associated with its hypoxia‐mimicking situation and small pore size, exhibits promotive effects on chondrogenic differentiation. The lower Mg 2+ supplementation from the bottom cryogel, associated with its interconnected macroporous structure, achieves multiple contributions in stem cell migration from bone marrow cavity, matrix mineralization, and osteogenesis. Furthermore, rabbits’ trochlea osteochondral defects are established to evaluate the regenerative outcome. Compared to control scaffolds containing only Mg 2+ or DFO, the D‐Mg‐DFO scaffold presents the best regenerative effect under the synergistic contribution of multiple factors. Overall, this work provides a new design of scaffold toward an effective repair of cartilage defect.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202304829</doi><orcidid>https://orcid.org/0000-0001-6618-0321</orcidid><orcidid>https://orcid.org/0000-0002-2543-9808</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-10, Vol.33 (43)
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2878220844
source Wiley-Blackwell Read & Publish Collection
subjects Bone marrow
Cartilage
Design defects
Hydrogels
Hypoxia
Magnesium
Materials science
Modulators
Pore size
Regeneration
Scaffolds
Stem cells
title Magnesium Gradient‐Based Hierarchical Scaffold for Dual‐Lineage Regeneration of Osteochondral Defect
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A56%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnesium%20Gradient%E2%80%90Based%20Hierarchical%20Scaffold%20for%20Dual%E2%80%90Lineage%20Regeneration%20of%20Osteochondral%20Defect&rft.jtitle=Advanced%20functional%20materials&rft.au=Gao,%20Chenyuan&rft.date=2023-10-18&rft.volume=33&rft.issue=43&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202304829&rft_dat=%3Cproquest_cross%3E2878220844%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c267t-bccef0c4f161089b179d728cccf0e230346be29533494c40308adcdde6916fb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2878220844&rft_id=info:pmid/&rfr_iscdi=true