Loading…

Stability analysis of arbitrary restrained nanobeam embedded in an elastic medium via nonlocal strain gradient theory

A novel stability model is analytically reformulated for the nano-sized beam resting on a one-parameter elastic foundation. The stability solution is based on the nonlocal strain gradient elasticity theory. To corporate the small size effects, two small scale parameters are introduced. The six-order...

Full description

Saved in:
Bibliographic Details
Published in:Journal of strain analysis for engineering design 2023-11, Vol.58 (8), p.672-683
Main Authors: Uzun, Büşra, Yaylı, Mustafa Özgür
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c312t-cf5c2d09518499fd071cd05da1817ab460231623e7650d3debed8204c26629613
cites cdi_FETCH-LOGICAL-c312t-cf5c2d09518499fd071cd05da1817ab460231623e7650d3debed8204c26629613
container_end_page 683
container_issue 8
container_start_page 672
container_title Journal of strain analysis for engineering design
container_volume 58
creator Uzun, Büşra
Yaylı, Mustafa Özgür
description A novel stability model is analytically reformulated for the nano-sized beam resting on a one-parameter elastic foundation. The stability solution is based on the nonlocal strain gradient elasticity theory. To corporate the small size effects, two small scale parameters are introduced. The six-order ordinary differential form of the buckling equation, together with two force boundary conditions, are utilized to examine the stability equation in terms of lateral deflection. The infinite terms of linear equations are discretized with the help of the Stokes’ transformation and Fourier sine series. The present work can investigate the effects of elastic spring parameters at the ends, nonlocal properties, elastic medium properties, strain gradient parameter, and buckling behavior of the nanobeam. The predictions of the proposed analytical model with deformable boundary conditions are in agreement with those available in the scientific literature for the nanobeam on elastic foundation based on a closed form of solution. The presence of the deformable conditions, elastic foundation, nonlocal, and strain gradient properties change the buckling loads and buckling mode shapes.
doi_str_mv 10.1177/03093247231164261
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2878253323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_03093247231164261</sage_id><sourcerecordid>2878253323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-cf5c2d09518499fd071cd05da1817ab460231623e7650d3debed8204c26629613</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz10zSZu0R1n8ggUP6rmkSbpmaZM1aYX-e1MqeBBPEybvM8wzCF0D2QAIcUsYqRjNBWUAPKccTtCKkhwyBoycotX8n82Bc3QR44EQEEVOV2h8HWRjOztMWDrZTdFG7FssQ2OHIMOEg4npYZ3R2EnnGyN7bPrGaJ061iUKm07GwSrcG23HHn9ZiZ13nVeywwuM90Fqa9yAhw_jw3SJzlrZRXP1U9fo_eH-bfuU7V4en7d3u0wxoEOm2kJRTaoCyryqWk0EKE0KLaEEIZuck6TLKTOCF0QzbdJaZbJWlHNacWBrdLPMPQb_OSaT-uDHkDxjTUtR0oIxylIKlpQKPsZg2voYbJ_kayD1fN36z3UTs1mYKPfmd-r_wDcHsHp7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878253323</pqid></control><display><type>article</type><title>Stability analysis of arbitrary restrained nanobeam embedded in an elastic medium via nonlocal strain gradient theory</title><source>SAGE</source><creator>Uzun, Büşra ; Yaylı, Mustafa Özgür</creator><creatorcontrib>Uzun, Büşra ; Yaylı, Mustafa Özgür</creatorcontrib><description>A novel stability model is analytically reformulated for the nano-sized beam resting on a one-parameter elastic foundation. The stability solution is based on the nonlocal strain gradient elasticity theory. To corporate the small size effects, two small scale parameters are introduced. The six-order ordinary differential form of the buckling equation, together with two force boundary conditions, are utilized to examine the stability equation in terms of lateral deflection. The infinite terms of linear equations are discretized with the help of the Stokes’ transformation and Fourier sine series. The present work can investigate the effects of elastic spring parameters at the ends, nonlocal properties, elastic medium properties, strain gradient parameter, and buckling behavior of the nanobeam. The predictions of the proposed analytical model with deformable boundary conditions are in agreement with those available in the scientific literature for the nanobeam on elastic foundation based on a closed form of solution. The presence of the deformable conditions, elastic foundation, nonlocal, and strain gradient properties change the buckling loads and buckling mode shapes.</description><identifier>ISSN: 0309-3247</identifier><identifier>EISSN: 2041-3130</identifier><identifier>DOI: 10.1177/03093247231164261</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Boundary conditions ; Buckling ; Elastic deformation ; Elastic foundations ; Elastic media ; Elastic properties ; Formability ; Fourier series ; Lateral stability ; Linear equations ; Mathematical models ; Parameters ; Sine series ; Size effects ; Stability analysis ; Strain</subject><ispartof>Journal of strain analysis for engineering design, 2023-11, Vol.58 (8), p.672-683</ispartof><rights>IMechE 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-cf5c2d09518499fd071cd05da1817ab460231623e7650d3debed8204c26629613</citedby><cites>FETCH-LOGICAL-c312t-cf5c2d09518499fd071cd05da1817ab460231623e7650d3debed8204c26629613</cites><orcidid>0000-0002-7636-7170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids></links><search><creatorcontrib>Uzun, Büşra</creatorcontrib><creatorcontrib>Yaylı, Mustafa Özgür</creatorcontrib><title>Stability analysis of arbitrary restrained nanobeam embedded in an elastic medium via nonlocal strain gradient theory</title><title>Journal of strain analysis for engineering design</title><description>A novel stability model is analytically reformulated for the nano-sized beam resting on a one-parameter elastic foundation. The stability solution is based on the nonlocal strain gradient elasticity theory. To corporate the small size effects, two small scale parameters are introduced. The six-order ordinary differential form of the buckling equation, together with two force boundary conditions, are utilized to examine the stability equation in terms of lateral deflection. The infinite terms of linear equations are discretized with the help of the Stokes’ transformation and Fourier sine series. The present work can investigate the effects of elastic spring parameters at the ends, nonlocal properties, elastic medium properties, strain gradient parameter, and buckling behavior of the nanobeam. The predictions of the proposed analytical model with deformable boundary conditions are in agreement with those available in the scientific literature for the nanobeam on elastic foundation based on a closed form of solution. The presence of the deformable conditions, elastic foundation, nonlocal, and strain gradient properties change the buckling loads and buckling mode shapes.</description><subject>Boundary conditions</subject><subject>Buckling</subject><subject>Elastic deformation</subject><subject>Elastic foundations</subject><subject>Elastic media</subject><subject>Elastic properties</subject><subject>Formability</subject><subject>Fourier series</subject><subject>Lateral stability</subject><subject>Linear equations</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Sine series</subject><subject>Size effects</subject><subject>Stability analysis</subject><subject>Strain</subject><issn>0309-3247</issn><issn>2041-3130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz10zSZu0R1n8ggUP6rmkSbpmaZM1aYX-e1MqeBBPEybvM8wzCF0D2QAIcUsYqRjNBWUAPKccTtCKkhwyBoycotX8n82Bc3QR44EQEEVOV2h8HWRjOztMWDrZTdFG7FssQ2OHIMOEg4npYZ3R2EnnGyN7bPrGaJ061iUKm07GwSrcG23HHn9ZiZ13nVeywwuM90Fqa9yAhw_jw3SJzlrZRXP1U9fo_eH-bfuU7V4en7d3u0wxoEOm2kJRTaoCyryqWk0EKE0KLaEEIZuck6TLKTOCF0QzbdJaZbJWlHNacWBrdLPMPQb_OSaT-uDHkDxjTUtR0oIxylIKlpQKPsZg2voYbJ_kayD1fN36z3UTs1mYKPfmd-r_wDcHsHp7</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Uzun, Büşra</creator><creator>Yaylı, Mustafa Özgür</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7636-7170</orcidid></search><sort><creationdate>202311</creationdate><title>Stability analysis of arbitrary restrained nanobeam embedded in an elastic medium via nonlocal strain gradient theory</title><author>Uzun, Büşra ; Yaylı, Mustafa Özgür</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-cf5c2d09518499fd071cd05da1817ab460231623e7650d3debed8204c26629613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary conditions</topic><topic>Buckling</topic><topic>Elastic deformation</topic><topic>Elastic foundations</topic><topic>Elastic media</topic><topic>Elastic properties</topic><topic>Formability</topic><topic>Fourier series</topic><topic>Lateral stability</topic><topic>Linear equations</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Sine series</topic><topic>Size effects</topic><topic>Stability analysis</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uzun, Büşra</creatorcontrib><creatorcontrib>Yaylı, Mustafa Özgür</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of strain analysis for engineering design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uzun, Büşra</au><au>Yaylı, Mustafa Özgür</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability analysis of arbitrary restrained nanobeam embedded in an elastic medium via nonlocal strain gradient theory</atitle><jtitle>Journal of strain analysis for engineering design</jtitle><date>2023-11</date><risdate>2023</risdate><volume>58</volume><issue>8</issue><spage>672</spage><epage>683</epage><pages>672-683</pages><issn>0309-3247</issn><eissn>2041-3130</eissn><abstract>A novel stability model is analytically reformulated for the nano-sized beam resting on a one-parameter elastic foundation. The stability solution is based on the nonlocal strain gradient elasticity theory. To corporate the small size effects, two small scale parameters are introduced. The six-order ordinary differential form of the buckling equation, together with two force boundary conditions, are utilized to examine the stability equation in terms of lateral deflection. The infinite terms of linear equations are discretized with the help of the Stokes’ transformation and Fourier sine series. The present work can investigate the effects of elastic spring parameters at the ends, nonlocal properties, elastic medium properties, strain gradient parameter, and buckling behavior of the nanobeam. The predictions of the proposed analytical model with deformable boundary conditions are in agreement with those available in the scientific literature for the nanobeam on elastic foundation based on a closed form of solution. The presence of the deformable conditions, elastic foundation, nonlocal, and strain gradient properties change the buckling loads and buckling mode shapes.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/03093247231164261</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7636-7170</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0309-3247
ispartof Journal of strain analysis for engineering design, 2023-11, Vol.58 (8), p.672-683
issn 0309-3247
2041-3130
language eng
recordid cdi_proquest_journals_2878253323
source SAGE
subjects Boundary conditions
Buckling
Elastic deformation
Elastic foundations
Elastic media
Elastic properties
Formability
Fourier series
Lateral stability
Linear equations
Mathematical models
Parameters
Sine series
Size effects
Stability analysis
Strain
title Stability analysis of arbitrary restrained nanobeam embedded in an elastic medium via nonlocal strain gradient theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20analysis%20of%20arbitrary%20restrained%20nanobeam%20embedded%20in%20an%20elastic%20medium%20via%20nonlocal%20strain%20gradient%20theory&rft.jtitle=Journal%20of%20strain%20analysis%20for%20engineering%20design&rft.au=Uzun,%20B%C3%BC%C5%9Fra&rft.date=2023-11&rft.volume=58&rft.issue=8&rft.spage=672&rft.epage=683&rft.pages=672-683&rft.issn=0309-3247&rft.eissn=2041-3130&rft_id=info:doi/10.1177/03093247231164261&rft_dat=%3Cproquest_cross%3E2878253323%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-cf5c2d09518499fd071cd05da1817ab460231623e7650d3debed8204c26629613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2878253323&rft_id=info:pmid/&rft_sage_id=10.1177_03093247231164261&rfr_iscdi=true