Loading…
Stability analysis of arbitrary restrained nanobeam embedded in an elastic medium via nonlocal strain gradient theory
A novel stability model is analytically reformulated for the nano-sized beam resting on a one-parameter elastic foundation. The stability solution is based on the nonlocal strain gradient elasticity theory. To corporate the small size effects, two small scale parameters are introduced. The six-order...
Saved in:
Published in: | Journal of strain analysis for engineering design 2023-11, Vol.58 (8), p.672-683 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c312t-cf5c2d09518499fd071cd05da1817ab460231623e7650d3debed8204c26629613 |
---|---|
cites | cdi_FETCH-LOGICAL-c312t-cf5c2d09518499fd071cd05da1817ab460231623e7650d3debed8204c26629613 |
container_end_page | 683 |
container_issue | 8 |
container_start_page | 672 |
container_title | Journal of strain analysis for engineering design |
container_volume | 58 |
creator | Uzun, Büşra Yaylı, Mustafa Özgür |
description | A novel stability model is analytically reformulated for the nano-sized beam resting on a one-parameter elastic foundation. The stability solution is based on the nonlocal strain gradient elasticity theory. To corporate the small size effects, two small scale parameters are introduced. The six-order ordinary differential form of the buckling equation, together with two force boundary conditions, are utilized to examine the stability equation in terms of lateral deflection. The infinite terms of linear equations are discretized with the help of the Stokes’ transformation and Fourier sine series. The present work can investigate the effects of elastic spring parameters at the ends, nonlocal properties, elastic medium properties, strain gradient parameter, and buckling behavior of the nanobeam. The predictions of the proposed analytical model with deformable boundary conditions are in agreement with those available in the scientific literature for the nanobeam on elastic foundation based on a closed form of solution. The presence of the deformable conditions, elastic foundation, nonlocal, and strain gradient properties change the buckling loads and buckling mode shapes. |
doi_str_mv | 10.1177/03093247231164261 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2878253323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_03093247231164261</sage_id><sourcerecordid>2878253323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-cf5c2d09518499fd071cd05da1817ab460231623e7650d3debed8204c26629613</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz10zSZu0R1n8ggUP6rmkSbpmaZM1aYX-e1MqeBBPEybvM8wzCF0D2QAIcUsYqRjNBWUAPKccTtCKkhwyBoycotX8n82Bc3QR44EQEEVOV2h8HWRjOztMWDrZTdFG7FssQ2OHIMOEg4npYZ3R2EnnGyN7bPrGaJ061iUKm07GwSrcG23HHn9ZiZ13nVeywwuM90Fqa9yAhw_jw3SJzlrZRXP1U9fo_eH-bfuU7V4en7d3u0wxoEOm2kJRTaoCyryqWk0EKE0KLaEEIZuck6TLKTOCF0QzbdJaZbJWlHNacWBrdLPMPQb_OSaT-uDHkDxjTUtR0oIxylIKlpQKPsZg2voYbJ_kayD1fN36z3UTs1mYKPfmd-r_wDcHsHp7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878253323</pqid></control><display><type>article</type><title>Stability analysis of arbitrary restrained nanobeam embedded in an elastic medium via nonlocal strain gradient theory</title><source>SAGE</source><creator>Uzun, Büşra ; Yaylı, Mustafa Özgür</creator><creatorcontrib>Uzun, Büşra ; Yaylı, Mustafa Özgür</creatorcontrib><description>A novel stability model is analytically reformulated for the nano-sized beam resting on a one-parameter elastic foundation. The stability solution is based on the nonlocal strain gradient elasticity theory. To corporate the small size effects, two small scale parameters are introduced. The six-order ordinary differential form of the buckling equation, together with two force boundary conditions, are utilized to examine the stability equation in terms of lateral deflection. The infinite terms of linear equations are discretized with the help of the Stokes’ transformation and Fourier sine series. The present work can investigate the effects of elastic spring parameters at the ends, nonlocal properties, elastic medium properties, strain gradient parameter, and buckling behavior of the nanobeam. The predictions of the proposed analytical model with deformable boundary conditions are in agreement with those available in the scientific literature for the nanobeam on elastic foundation based on a closed form of solution. The presence of the deformable conditions, elastic foundation, nonlocal, and strain gradient properties change the buckling loads and buckling mode shapes.</description><identifier>ISSN: 0309-3247</identifier><identifier>EISSN: 2041-3130</identifier><identifier>DOI: 10.1177/03093247231164261</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Boundary conditions ; Buckling ; Elastic deformation ; Elastic foundations ; Elastic media ; Elastic properties ; Formability ; Fourier series ; Lateral stability ; Linear equations ; Mathematical models ; Parameters ; Sine series ; Size effects ; Stability analysis ; Strain</subject><ispartof>Journal of strain analysis for engineering design, 2023-11, Vol.58 (8), p.672-683</ispartof><rights>IMechE 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-cf5c2d09518499fd071cd05da1817ab460231623e7650d3debed8204c26629613</citedby><cites>FETCH-LOGICAL-c312t-cf5c2d09518499fd071cd05da1817ab460231623e7650d3debed8204c26629613</cites><orcidid>0000-0002-7636-7170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids></links><search><creatorcontrib>Uzun, Büşra</creatorcontrib><creatorcontrib>Yaylı, Mustafa Özgür</creatorcontrib><title>Stability analysis of arbitrary restrained nanobeam embedded in an elastic medium via nonlocal strain gradient theory</title><title>Journal of strain analysis for engineering design</title><description>A novel stability model is analytically reformulated for the nano-sized beam resting on a one-parameter elastic foundation. The stability solution is based on the nonlocal strain gradient elasticity theory. To corporate the small size effects, two small scale parameters are introduced. The six-order ordinary differential form of the buckling equation, together with two force boundary conditions, are utilized to examine the stability equation in terms of lateral deflection. The infinite terms of linear equations are discretized with the help of the Stokes’ transformation and Fourier sine series. The present work can investigate the effects of elastic spring parameters at the ends, nonlocal properties, elastic medium properties, strain gradient parameter, and buckling behavior of the nanobeam. The predictions of the proposed analytical model with deformable boundary conditions are in agreement with those available in the scientific literature for the nanobeam on elastic foundation based on a closed form of solution. The presence of the deformable conditions, elastic foundation, nonlocal, and strain gradient properties change the buckling loads and buckling mode shapes.</description><subject>Boundary conditions</subject><subject>Buckling</subject><subject>Elastic deformation</subject><subject>Elastic foundations</subject><subject>Elastic media</subject><subject>Elastic properties</subject><subject>Formability</subject><subject>Fourier series</subject><subject>Lateral stability</subject><subject>Linear equations</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Sine series</subject><subject>Size effects</subject><subject>Stability analysis</subject><subject>Strain</subject><issn>0309-3247</issn><issn>2041-3130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz10zSZu0R1n8ggUP6rmkSbpmaZM1aYX-e1MqeBBPEybvM8wzCF0D2QAIcUsYqRjNBWUAPKccTtCKkhwyBoycotX8n82Bc3QR44EQEEVOV2h8HWRjOztMWDrZTdFG7FssQ2OHIMOEg4npYZ3R2EnnGyN7bPrGaJ061iUKm07GwSrcG23HHn9ZiZ13nVeywwuM90Fqa9yAhw_jw3SJzlrZRXP1U9fo_eH-bfuU7V4en7d3u0wxoEOm2kJRTaoCyryqWk0EKE0KLaEEIZuck6TLKTOCF0QzbdJaZbJWlHNacWBrdLPMPQb_OSaT-uDHkDxjTUtR0oIxylIKlpQKPsZg2voYbJ_kayD1fN36z3UTs1mYKPfmd-r_wDcHsHp7</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Uzun, Büşra</creator><creator>Yaylı, Mustafa Özgür</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7636-7170</orcidid></search><sort><creationdate>202311</creationdate><title>Stability analysis of arbitrary restrained nanobeam embedded in an elastic medium via nonlocal strain gradient theory</title><author>Uzun, Büşra ; Yaylı, Mustafa Özgür</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-cf5c2d09518499fd071cd05da1817ab460231623e7650d3debed8204c26629613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary conditions</topic><topic>Buckling</topic><topic>Elastic deformation</topic><topic>Elastic foundations</topic><topic>Elastic media</topic><topic>Elastic properties</topic><topic>Formability</topic><topic>Fourier series</topic><topic>Lateral stability</topic><topic>Linear equations</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Sine series</topic><topic>Size effects</topic><topic>Stability analysis</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uzun, Büşra</creatorcontrib><creatorcontrib>Yaylı, Mustafa Özgür</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of strain analysis for engineering design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uzun, Büşra</au><au>Yaylı, Mustafa Özgür</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability analysis of arbitrary restrained nanobeam embedded in an elastic medium via nonlocal strain gradient theory</atitle><jtitle>Journal of strain analysis for engineering design</jtitle><date>2023-11</date><risdate>2023</risdate><volume>58</volume><issue>8</issue><spage>672</spage><epage>683</epage><pages>672-683</pages><issn>0309-3247</issn><eissn>2041-3130</eissn><abstract>A novel stability model is analytically reformulated for the nano-sized beam resting on a one-parameter elastic foundation. The stability solution is based on the nonlocal strain gradient elasticity theory. To corporate the small size effects, two small scale parameters are introduced. The six-order ordinary differential form of the buckling equation, together with two force boundary conditions, are utilized to examine the stability equation in terms of lateral deflection. The infinite terms of linear equations are discretized with the help of the Stokes’ transformation and Fourier sine series. The present work can investigate the effects of elastic spring parameters at the ends, nonlocal properties, elastic medium properties, strain gradient parameter, and buckling behavior of the nanobeam. The predictions of the proposed analytical model with deformable boundary conditions are in agreement with those available in the scientific literature for the nanobeam on elastic foundation based on a closed form of solution. The presence of the deformable conditions, elastic foundation, nonlocal, and strain gradient properties change the buckling loads and buckling mode shapes.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/03093247231164261</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7636-7170</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0309-3247 |
ispartof | Journal of strain analysis for engineering design, 2023-11, Vol.58 (8), p.672-683 |
issn | 0309-3247 2041-3130 |
language | eng |
recordid | cdi_proquest_journals_2878253323 |
source | SAGE |
subjects | Boundary conditions Buckling Elastic deformation Elastic foundations Elastic media Elastic properties Formability Fourier series Lateral stability Linear equations Mathematical models Parameters Sine series Size effects Stability analysis Strain |
title | Stability analysis of arbitrary restrained nanobeam embedded in an elastic medium via nonlocal strain gradient theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20analysis%20of%20arbitrary%20restrained%20nanobeam%20embedded%20in%20an%20elastic%20medium%20via%20nonlocal%20strain%20gradient%20theory&rft.jtitle=Journal%20of%20strain%20analysis%20for%20engineering%20design&rft.au=Uzun,%20B%C3%BC%C5%9Fra&rft.date=2023-11&rft.volume=58&rft.issue=8&rft.spage=672&rft.epage=683&rft.pages=672-683&rft.issn=0309-3247&rft.eissn=2041-3130&rft_id=info:doi/10.1177/03093247231164261&rft_dat=%3Cproquest_cross%3E2878253323%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-cf5c2d09518499fd071cd05da1817ab460231623e7650d3debed8204c26629613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2878253323&rft_id=info:pmid/&rft_sage_id=10.1177_03093247231164261&rfr_iscdi=true |