Loading…

Comparative Analysis of Optimization Strategies for K-means Clustering in Big Data Contexts: A Review

This paper presents a comparative analysis of different optimization techniques for the K-means algorithm in the context of big data. K-means is a widely used clustering algorithm, but it can suffer from scalability issues when dealing with large datasets. The paper explores different approaches to...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-05
Main Authors: Mussabayev, Ravil, Mussabayev, Rustam
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mussabayev, Ravil
Mussabayev, Rustam
description This paper presents a comparative analysis of different optimization techniques for the K-means algorithm in the context of big data. K-means is a widely used clustering algorithm, but it can suffer from scalability issues when dealing with large datasets. The paper explores different approaches to overcome these issues, including parallelization, approximation, and sampling methods. The authors evaluate the performance of various clustering techniques on a large number of benchmark datasets, comparing them according to the dominance criterion provided by the "less is more" approach (LIMA), i.e., simultaneously along the dimensions of speed, clustering quality, and simplicity. The results show that different techniques are more suitable for different types of datasets and provide insights into the trade-offs between speed and accuracy in K-means clustering for big data. Overall, the paper offers a comprehensive guide for practitioners and researchers on how to optimize K-means for big data applications.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2878363368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878363368</sourcerecordid><originalsourceid>FETCH-proquest_journals_28783633683</originalsourceid><addsrcrecordid>eNqNjcsKwjAQAIMgWLT_sOC5UBOtxVuNiuBBUO-Sw7astEnNpr6-3h78AE9zmIEZiEgqNUvyuZQjETPf0jSV2VIuFioSqF3TGm8CPRAKa-o3E4Mr4dgGaujTC2fhHPoCK0KG0nk4JA0ay6DrjgN6shWQhTVVsDHBgHY24CvwCgo44YPwORHD0tSM8Y9jMd1tL3qftN7dO-RwvbnO93e-ynyZq0ypLFf_VV9K50ZH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878363368</pqid></control><display><type>article</type><title>Comparative Analysis of Optimization Strategies for K-means Clustering in Big Data Contexts: A Review</title><source>Publicly Available Content Database</source><creator>Mussabayev, Ravil ; Mussabayev, Rustam</creator><creatorcontrib>Mussabayev, Ravil ; Mussabayev, Rustam</creatorcontrib><description>This paper presents a comparative analysis of different optimization techniques for the K-means algorithm in the context of big data. K-means is a widely used clustering algorithm, but it can suffer from scalability issues when dealing with large datasets. The paper explores different approaches to overcome these issues, including parallelization, approximation, and sampling methods. The authors evaluate the performance of various clustering techniques on a large number of benchmark datasets, comparing them according to the dominance criterion provided by the "less is more" approach (LIMA), i.e., simultaneously along the dimensions of speed, clustering quality, and simplicity. The results show that different techniques are more suitable for different types of datasets and provide insights into the trade-offs between speed and accuracy in K-means clustering for big data. Overall, the paper offers a comprehensive guide for practitioners and researchers on how to optimize K-means for big data applications.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Big Data ; Cluster analysis ; Clustering ; Comparative studies ; Datasets ; Optimization ; Vector quantization</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2878363368?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Mussabayev, Ravil</creatorcontrib><creatorcontrib>Mussabayev, Rustam</creatorcontrib><title>Comparative Analysis of Optimization Strategies for K-means Clustering in Big Data Contexts: A Review</title><title>arXiv.org</title><description>This paper presents a comparative analysis of different optimization techniques for the K-means algorithm in the context of big data. K-means is a widely used clustering algorithm, but it can suffer from scalability issues when dealing with large datasets. The paper explores different approaches to overcome these issues, including parallelization, approximation, and sampling methods. The authors evaluate the performance of various clustering techniques on a large number of benchmark datasets, comparing them according to the dominance criterion provided by the "less is more" approach (LIMA), i.e., simultaneously along the dimensions of speed, clustering quality, and simplicity. The results show that different techniques are more suitable for different types of datasets and provide insights into the trade-offs between speed and accuracy in K-means clustering for big data. Overall, the paper offers a comprehensive guide for practitioners and researchers on how to optimize K-means for big data applications.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Comparative studies</subject><subject>Datasets</subject><subject>Optimization</subject><subject>Vector quantization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjcsKwjAQAIMgWLT_sOC5UBOtxVuNiuBBUO-Sw7astEnNpr6-3h78AE9zmIEZiEgqNUvyuZQjETPf0jSV2VIuFioSqF3TGm8CPRAKa-o3E4Mr4dgGaujTC2fhHPoCK0KG0nk4JA0ay6DrjgN6shWQhTVVsDHBgHY24CvwCgo44YPwORHD0tSM8Y9jMd1tL3qftN7dO-RwvbnO93e-ynyZq0ypLFf_VV9K50ZH</recordid><startdate>20240520</startdate><enddate>20240520</enddate><creator>Mussabayev, Ravil</creator><creator>Mussabayev, Rustam</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240520</creationdate><title>Comparative Analysis of Optimization Strategies for K-means Clustering in Big Data Contexts: A Review</title><author>Mussabayev, Ravil ; Mussabayev, Rustam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28783633683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Comparative studies</topic><topic>Datasets</topic><topic>Optimization</topic><topic>Vector quantization</topic><toplevel>online_resources</toplevel><creatorcontrib>Mussabayev, Ravil</creatorcontrib><creatorcontrib>Mussabayev, Rustam</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mussabayev, Ravil</au><au>Mussabayev, Rustam</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Comparative Analysis of Optimization Strategies for K-means Clustering in Big Data Contexts: A Review</atitle><jtitle>arXiv.org</jtitle><date>2024-05-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper presents a comparative analysis of different optimization techniques for the K-means algorithm in the context of big data. K-means is a widely used clustering algorithm, but it can suffer from scalability issues when dealing with large datasets. The paper explores different approaches to overcome these issues, including parallelization, approximation, and sampling methods. The authors evaluate the performance of various clustering techniques on a large number of benchmark datasets, comparing them according to the dominance criterion provided by the "less is more" approach (LIMA), i.e., simultaneously along the dimensions of speed, clustering quality, and simplicity. The results show that different techniques are more suitable for different types of datasets and provide insights into the trade-offs between speed and accuracy in K-means clustering for big data. Overall, the paper offers a comprehensive guide for practitioners and researchers on how to optimize K-means for big data applications.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2878363368
source Publicly Available Content Database
subjects Algorithms
Big Data
Cluster analysis
Clustering
Comparative studies
Datasets
Optimization
Vector quantization
title Comparative Analysis of Optimization Strategies for K-means Clustering in Big Data Contexts: A Review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A44%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Comparative%20Analysis%20of%20Optimization%20Strategies%20for%20K-means%20Clustering%20in%20Big%20Data%20Contexts:%20A%20Review&rft.jtitle=arXiv.org&rft.au=Mussabayev,%20Ravil&rft.date=2024-05-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2878363368%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28783633683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2878363368&rft_id=info:pmid/&rfr_iscdi=true