Loading…
(h\)-function, Hilbert-Kunz density function and Frobenius-Poincaré function
Given ideals \(I,J\) of a noetherian local ring \((R, \mathfrak m)\) such that \(I+J\) is \(\mathfrak m\)-primary and a finitely generated module \(M\), we associate an invariant of \((M,R,I,J)\) called the \(h\)-function. Our results on \(h\)-function allow extensions of the theories of Frobenius-P...
Saved in:
Published in: | arXiv.org 2023-10 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cheng, Meng Mukhopadhyay, Alapan |
description | Given ideals \(I,J\) of a noetherian local ring \((R, \mathfrak m)\) such that \(I+J\) is \(\mathfrak m\)-primary and a finitely generated module \(M\), we associate an invariant of \((M,R,I,J)\) called the \(h\)-function. Our results on \(h\)-function allow extensions of the theories of Frobenius-Poincaré functions and Hilbert-Kunz density functions from the known graded case to the local case, answering a question of Trivedi. When \(J\) is \(\mathfrak m\)-primary, we describe the support of the corresponding density function in terms of other invariants of \((R, I,J)\). We show that the support captures the \(F\)-threshold: \(c^J(I)\), under mild assumptions, extending results of Trivedi and Watanabe. The \(h\)-function treats Hilbert-Samuel, Hilbert-Kunz multiplicity and \(F\)-threshold on an equal footing. We develop the theory of \(h\)-functions in a more general setting which yields a density function for \(F\)-signature. A key to many results on \(h\)-function is a `convexity technique' that we introduce, which in particular proves differentiability of Hilbert-Kunz density function almost everywhere, thus contributing to another question of Trivedi. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2878367774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878367774</sourcerecordid><originalsourceid>FETCH-proquest_journals_28783677743</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTw1ciI0dRNK81LLsnMz9NR8MjMSUotKtH1Ls2rUkhJzSvOLKlUgEkrJOalKLgV5Sel5mWWFusG5GfmJScWHV4JV8DDwJqWmFOcyguluRmU3VxDnD10C4ryC0tTi0vis_JLi_KAUvFGFuYWxmbm5uYmxsSpAgCv4T6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878367774</pqid></control><display><type>article</type><title>(h\)-function, Hilbert-Kunz density function and Frobenius-Poincaré function</title><source>Publicly Available Content Database</source><creator>Cheng, Meng ; Mukhopadhyay, Alapan</creator><creatorcontrib>Cheng, Meng ; Mukhopadhyay, Alapan</creatorcontrib><description>Given ideals \(I,J\) of a noetherian local ring \((R, \mathfrak m)\) such that \(I+J\) is \(\mathfrak m\)-primary and a finitely generated module \(M\), we associate an invariant of \((M,R,I,J)\) called the \(h\)-function. Our results on \(h\)-function allow extensions of the theories of Frobenius-Poincaré functions and Hilbert-Kunz density functions from the known graded case to the local case, answering a question of Trivedi. When \(J\) is \(\mathfrak m\)-primary, we describe the support of the corresponding density function in terms of other invariants of \((R, I,J)\). We show that the support captures the \(F\)-threshold: \(c^J(I)\), under mild assumptions, extending results of Trivedi and Watanabe. The \(h\)-function treats Hilbert-Samuel, Hilbert-Kunz multiplicity and \(F\)-threshold on an equal footing. We develop the theory of \(h\)-functions in a more general setting which yields a density function for \(F\)-signature. A key to many results on \(h\)-function is a `convexity technique' that we introduce, which in particular proves differentiability of Hilbert-Kunz density function almost everywhere, thus contributing to another question of Trivedi.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convexity ; Density ; Invariants ; Questions</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2878367774?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Cheng, Meng</creatorcontrib><creatorcontrib>Mukhopadhyay, Alapan</creatorcontrib><title>(h\)-function, Hilbert-Kunz density function and Frobenius-Poincaré function</title><title>arXiv.org</title><description>Given ideals \(I,J\) of a noetherian local ring \((R, \mathfrak m)\) such that \(I+J\) is \(\mathfrak m\)-primary and a finitely generated module \(M\), we associate an invariant of \((M,R,I,J)\) called the \(h\)-function. Our results on \(h\)-function allow extensions of the theories of Frobenius-Poincaré functions and Hilbert-Kunz density functions from the known graded case to the local case, answering a question of Trivedi. When \(J\) is \(\mathfrak m\)-primary, we describe the support of the corresponding density function in terms of other invariants of \((R, I,J)\). We show that the support captures the \(F\)-threshold: \(c^J(I)\), under mild assumptions, extending results of Trivedi and Watanabe. The \(h\)-function treats Hilbert-Samuel, Hilbert-Kunz multiplicity and \(F\)-threshold on an equal footing. We develop the theory of \(h\)-functions in a more general setting which yields a density function for \(F\)-signature. A key to many results on \(h\)-function is a `convexity technique' that we introduce, which in particular proves differentiability of Hilbert-Kunz density function almost everywhere, thus contributing to another question of Trivedi.</description><subject>Convexity</subject><subject>Density</subject><subject>Invariants</subject><subject>Questions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTw1ciI0dRNK81LLsnMz9NR8MjMSUotKtH1Ls2rUkhJzSvOLKlUgEkrJOalKLgV5Sel5mWWFusG5GfmJScWHV4JV8DDwJqWmFOcyguluRmU3VxDnD10C4ryC0tTi0vis_JLi_KAUvFGFuYWxmbm5uYmxsSpAgCv4T6M</recordid><startdate>20231016</startdate><enddate>20231016</enddate><creator>Cheng, Meng</creator><creator>Mukhopadhyay, Alapan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231016</creationdate><title>(h\)-function, Hilbert-Kunz density function and Frobenius-Poincaré function</title><author>Cheng, Meng ; Mukhopadhyay, Alapan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28783677743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convexity</topic><topic>Density</topic><topic>Invariants</topic><topic>Questions</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Meng</creatorcontrib><creatorcontrib>Mukhopadhyay, Alapan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Meng</au><au>Mukhopadhyay, Alapan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>(h\)-function, Hilbert-Kunz density function and Frobenius-Poincaré function</atitle><jtitle>arXiv.org</jtitle><date>2023-10-16</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Given ideals \(I,J\) of a noetherian local ring \((R, \mathfrak m)\) such that \(I+J\) is \(\mathfrak m\)-primary and a finitely generated module \(M\), we associate an invariant of \((M,R,I,J)\) called the \(h\)-function. Our results on \(h\)-function allow extensions of the theories of Frobenius-Poincaré functions and Hilbert-Kunz density functions from the known graded case to the local case, answering a question of Trivedi. When \(J\) is \(\mathfrak m\)-primary, we describe the support of the corresponding density function in terms of other invariants of \((R, I,J)\). We show that the support captures the \(F\)-threshold: \(c^J(I)\), under mild assumptions, extending results of Trivedi and Watanabe. The \(h\)-function treats Hilbert-Samuel, Hilbert-Kunz multiplicity and \(F\)-threshold on an equal footing. We develop the theory of \(h\)-functions in a more general setting which yields a density function for \(F\)-signature. A key to many results on \(h\)-function is a `convexity technique' that we introduce, which in particular proves differentiability of Hilbert-Kunz density function almost everywhere, thus contributing to another question of Trivedi.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2878367774 |
source | Publicly Available Content Database |
subjects | Convexity Density Invariants Questions |
title | (h\)-function, Hilbert-Kunz density function and Frobenius-Poincaré function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=(h%5C)-function,%20Hilbert-Kunz%20density%20function%20and%20Frobenius-Poincar%C3%A9%20function&rft.jtitle=arXiv.org&rft.au=Cheng,%20Meng&rft.date=2023-10-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2878367774%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28783677743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2878367774&rft_id=info:pmid/&rfr_iscdi=true |