Loading…
Second-order bounds for the M/M/\(s\) queue with random arrival rate
Consider an M/M/\(s\) queue with the additional feature that the arrival rate is a random variable of which only the mean, variance, and range are known. Using semi-infinite linear programming and duality theory for moment problems, we establish for this setting tight bounds for the expected waiting...
Saved in:
Published in: | arXiv.org 2023-10 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wouter J E C van Eekelen Hanasusanto, Grani A Hasenbein, John J Johan S H van Leeuwaarden |
description | Consider an M/M/\(s\) queue with the additional feature that the arrival rate is a random variable of which only the mean, variance, and range are known. Using semi-infinite linear programming and duality theory for moment problems, we establish for this setting tight bounds for the expected waiting time. These bounds correspond to an arrival rate that takes only two values. The proofs crucially depend on the fact that the expected waiting time, as function of the arrival rate, has a convex derivative. We apply the novel tight bounds to a rational queueing model, where arriving individuals decide to join or balk based on expected utility and only have partial knowledge about the market size. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2878368384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878368384</sourcerecordid><originalsourceid>FETCH-proquest_journals_28783683843</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwCU5Nzs9L0c0vSkktUkjKL81LKVZIyy9SKMlIVfDV99WP0SiO0VQoLE0tTVUozyzJUChKzEvJz1VILCrKLEvMAXJLUnkYWNMSc4pTeaE0N4Oym2uIs4duQVE-UGdxSXxWfmlRHlAq3sjC3MLYzMLYwsSYOFUAqnc5hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878368384</pqid></control><display><type>article</type><title>Second-order bounds for the M/M/\(s\) queue with random arrival rate</title><source>Publicly Available Content (ProQuest)</source><creator>Wouter J E C van Eekelen ; Hanasusanto, Grani A ; Hasenbein, John J ; Johan S H van Leeuwaarden</creator><creatorcontrib>Wouter J E C van Eekelen ; Hanasusanto, Grani A ; Hasenbein, John J ; Johan S H van Leeuwaarden</creatorcontrib><description>Consider an M/M/\(s\) queue with the additional feature that the arrival rate is a random variable of which only the mean, variance, and range are known. Using semi-infinite linear programming and duality theory for moment problems, we establish for this setting tight bounds for the expected waiting time. These bounds correspond to an arrival rate that takes only two values. The proofs crucially depend on the fact that the expected waiting time, as function of the arrival rate, has a convex derivative. We apply the novel tight bounds to a rational queueing model, where arriving individuals decide to join or balk based on expected utility and only have partial knowledge about the market size.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Linear programming ; Queuing theory ; Random variables</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2878368384?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Wouter J E C van Eekelen</creatorcontrib><creatorcontrib>Hanasusanto, Grani A</creatorcontrib><creatorcontrib>Hasenbein, John J</creatorcontrib><creatorcontrib>Johan S H van Leeuwaarden</creatorcontrib><title>Second-order bounds for the M/M/\(s\) queue with random arrival rate</title><title>arXiv.org</title><description>Consider an M/M/\(s\) queue with the additional feature that the arrival rate is a random variable of which only the mean, variance, and range are known. Using semi-infinite linear programming and duality theory for moment problems, we establish for this setting tight bounds for the expected waiting time. These bounds correspond to an arrival rate that takes only two values. The proofs crucially depend on the fact that the expected waiting time, as function of the arrival rate, has a convex derivative. We apply the novel tight bounds to a rational queueing model, where arriving individuals decide to join or balk based on expected utility and only have partial knowledge about the market size.</description><subject>Linear programming</subject><subject>Queuing theory</subject><subject>Random variables</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwCU5Nzs9L0c0vSkktUkjKL81LKVZIyy9SKMlIVfDV99WP0SiO0VQoLE0tTVUozyzJUChKzEvJz1VILCrKLEvMAXJLUnkYWNMSc4pTeaE0N4Oym2uIs4duQVE-UGdxSXxWfmlRHlAq3sjC3MLYzMLYwsSYOFUAqnc5hg</recordid><startdate>20231016</startdate><enddate>20231016</enddate><creator>Wouter J E C van Eekelen</creator><creator>Hanasusanto, Grani A</creator><creator>Hasenbein, John J</creator><creator>Johan S H van Leeuwaarden</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231016</creationdate><title>Second-order bounds for the M/M/\(s\) queue with random arrival rate</title><author>Wouter J E C van Eekelen ; Hanasusanto, Grani A ; Hasenbein, John J ; Johan S H van Leeuwaarden</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28783683843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Linear programming</topic><topic>Queuing theory</topic><topic>Random variables</topic><toplevel>online_resources</toplevel><creatorcontrib>Wouter J E C van Eekelen</creatorcontrib><creatorcontrib>Hanasusanto, Grani A</creatorcontrib><creatorcontrib>Hasenbein, John J</creatorcontrib><creatorcontrib>Johan S H van Leeuwaarden</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wouter J E C van Eekelen</au><au>Hanasusanto, Grani A</au><au>Hasenbein, John J</au><au>Johan S H van Leeuwaarden</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Second-order bounds for the M/M/\(s\) queue with random arrival rate</atitle><jtitle>arXiv.org</jtitle><date>2023-10-16</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Consider an M/M/\(s\) queue with the additional feature that the arrival rate is a random variable of which only the mean, variance, and range are known. Using semi-infinite linear programming and duality theory for moment problems, we establish for this setting tight bounds for the expected waiting time. These bounds correspond to an arrival rate that takes only two values. The proofs crucially depend on the fact that the expected waiting time, as function of the arrival rate, has a convex derivative. We apply the novel tight bounds to a rational queueing model, where arriving individuals decide to join or balk based on expected utility and only have partial knowledge about the market size.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2878368384 |
source | Publicly Available Content (ProQuest) |
subjects | Linear programming Queuing theory Random variables |
title | Second-order bounds for the M/M/\(s\) queue with random arrival rate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Second-order%20bounds%20for%20the%20M/M/%5C(s%5C)%20queue%20with%20random%20arrival%20rate&rft.jtitle=arXiv.org&rft.au=Wouter%20J%20E%20C%20van%20Eekelen&rft.date=2023-10-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2878368384%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28783683843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2878368384&rft_id=info:pmid/&rfr_iscdi=true |