Loading…

Second-order bounds for the M/M/\(s\) queue with random arrival rate

Consider an M/M/\(s\) queue with the additional feature that the arrival rate is a random variable of which only the mean, variance, and range are known. Using semi-infinite linear programming and duality theory for moment problems, we establish for this setting tight bounds for the expected waiting...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-10
Main Authors: Wouter J E C van Eekelen, Hanasusanto, Grani A, Hasenbein, John J, Johan S H van Leeuwaarden
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wouter J E C van Eekelen
Hanasusanto, Grani A
Hasenbein, John J
Johan S H van Leeuwaarden
description Consider an M/M/\(s\) queue with the additional feature that the arrival rate is a random variable of which only the mean, variance, and range are known. Using semi-infinite linear programming and duality theory for moment problems, we establish for this setting tight bounds for the expected waiting time. These bounds correspond to an arrival rate that takes only two values. The proofs crucially depend on the fact that the expected waiting time, as function of the arrival rate, has a convex derivative. We apply the novel tight bounds to a rational queueing model, where arriving individuals decide to join or balk based on expected utility and only have partial knowledge about the market size.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2878368384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878368384</sourcerecordid><originalsourceid>FETCH-proquest_journals_28783683843</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwCU5Nzs9L0c0vSkktUkjKL81LKVZIyy9SKMlIVfDV99WP0SiO0VQoLE0tTVUozyzJUChKzEvJz1VILCrKLEvMAXJLUnkYWNMSc4pTeaE0N4Oym2uIs4duQVE-UGdxSXxWfmlRHlAq3sjC3MLYzMLYwsSYOFUAqnc5hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878368384</pqid></control><display><type>article</type><title>Second-order bounds for the M/M/\(s\) queue with random arrival rate</title><source>Publicly Available Content (ProQuest)</source><creator>Wouter J E C van Eekelen ; Hanasusanto, Grani A ; Hasenbein, John J ; Johan S H van Leeuwaarden</creator><creatorcontrib>Wouter J E C van Eekelen ; Hanasusanto, Grani A ; Hasenbein, John J ; Johan S H van Leeuwaarden</creatorcontrib><description>Consider an M/M/\(s\) queue with the additional feature that the arrival rate is a random variable of which only the mean, variance, and range are known. Using semi-infinite linear programming and duality theory for moment problems, we establish for this setting tight bounds for the expected waiting time. These bounds correspond to an arrival rate that takes only two values. The proofs crucially depend on the fact that the expected waiting time, as function of the arrival rate, has a convex derivative. We apply the novel tight bounds to a rational queueing model, where arriving individuals decide to join or balk based on expected utility and only have partial knowledge about the market size.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Linear programming ; Queuing theory ; Random variables</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2878368384?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Wouter J E C van Eekelen</creatorcontrib><creatorcontrib>Hanasusanto, Grani A</creatorcontrib><creatorcontrib>Hasenbein, John J</creatorcontrib><creatorcontrib>Johan S H van Leeuwaarden</creatorcontrib><title>Second-order bounds for the M/M/\(s\) queue with random arrival rate</title><title>arXiv.org</title><description>Consider an M/M/\(s\) queue with the additional feature that the arrival rate is a random variable of which only the mean, variance, and range are known. Using semi-infinite linear programming and duality theory for moment problems, we establish for this setting tight bounds for the expected waiting time. These bounds correspond to an arrival rate that takes only two values. The proofs crucially depend on the fact that the expected waiting time, as function of the arrival rate, has a convex derivative. We apply the novel tight bounds to a rational queueing model, where arriving individuals decide to join or balk based on expected utility and only have partial knowledge about the market size.</description><subject>Linear programming</subject><subject>Queuing theory</subject><subject>Random variables</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwCU5Nzs9L0c0vSkktUkjKL81LKVZIyy9SKMlIVfDV99WP0SiO0VQoLE0tTVUozyzJUChKzEvJz1VILCrKLEvMAXJLUnkYWNMSc4pTeaE0N4Oym2uIs4duQVE-UGdxSXxWfmlRHlAq3sjC3MLYzMLYwsSYOFUAqnc5hg</recordid><startdate>20231016</startdate><enddate>20231016</enddate><creator>Wouter J E C van Eekelen</creator><creator>Hanasusanto, Grani A</creator><creator>Hasenbein, John J</creator><creator>Johan S H van Leeuwaarden</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231016</creationdate><title>Second-order bounds for the M/M/\(s\) queue with random arrival rate</title><author>Wouter J E C van Eekelen ; Hanasusanto, Grani A ; Hasenbein, John J ; Johan S H van Leeuwaarden</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28783683843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Linear programming</topic><topic>Queuing theory</topic><topic>Random variables</topic><toplevel>online_resources</toplevel><creatorcontrib>Wouter J E C van Eekelen</creatorcontrib><creatorcontrib>Hanasusanto, Grani A</creatorcontrib><creatorcontrib>Hasenbein, John J</creatorcontrib><creatorcontrib>Johan S H van Leeuwaarden</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wouter J E C van Eekelen</au><au>Hanasusanto, Grani A</au><au>Hasenbein, John J</au><au>Johan S H van Leeuwaarden</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Second-order bounds for the M/M/\(s\) queue with random arrival rate</atitle><jtitle>arXiv.org</jtitle><date>2023-10-16</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Consider an M/M/\(s\) queue with the additional feature that the arrival rate is a random variable of which only the mean, variance, and range are known. Using semi-infinite linear programming and duality theory for moment problems, we establish for this setting tight bounds for the expected waiting time. These bounds correspond to an arrival rate that takes only two values. The proofs crucially depend on the fact that the expected waiting time, as function of the arrival rate, has a convex derivative. We apply the novel tight bounds to a rational queueing model, where arriving individuals decide to join or balk based on expected utility and only have partial knowledge about the market size.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2878368384
source Publicly Available Content (ProQuest)
subjects Linear programming
Queuing theory
Random variables
title Second-order bounds for the M/M/\(s\) queue with random arrival rate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Second-order%20bounds%20for%20the%20M/M/%5C(s%5C)%20queue%20with%20random%20arrival%20rate&rft.jtitle=arXiv.org&rft.au=Wouter%20J%20E%20C%20van%20Eekelen&rft.date=2023-10-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2878368384%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28783683843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2878368384&rft_id=info:pmid/&rfr_iscdi=true